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Introduction
 UK Packet network performs nowhere near its 

theoretical capacity.
 Major limiting factor is packet loss.
 Simply raising speed will not help.
 This presentation describes an available and very 

low cost scheme for reducing packet losses.
 It is powerful enough to make an unusable link 

into a good one.

When you consider how many links there are in the UK Packet Radio network, 
and how little data there is to be moved, you would think that there would be 
plenty of spare capacity.

However, the network as a whole does not perform well, and it would appear 
that the full potential of the network is not actually being realised.

In my view, the major limiting factor, regardless of link speed, is packet loss.  
Of all the packets launched into the ether, too many are simply lost, wasting a 
precious resource. The performance degradation caused by these losses is 
many times greater than the rate of loss.

This presentation outlines the causes and effects of packet loss, then describes 
a very easy and low cost scheme for reducing packet losses, simply by using 
better software with the existing hardware.

The system is so powerful that it can turn an unusable link into a good one.
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Consequences of Packet Loss
 Most packet-oriented protocols were designed for 

physical layers with very low loss / error rates.
 Average UK packet link runs at 10% packet loss 

rate (BER 1 in 10,000).
 Causes serious loss of throughput with AX25, 

e.g. half duplex only achieves 50% of maximum 
for that mode.

 Datagram-mode TCP/IP is unworkable at such a 
loss rate.

Although all packet-oriented protocols are designed to cope with lost or 
corrupt packets, in most cases they were designed for physical layers with very 
low error rates and high bandwidth, such as wire or microwave links.

The designers assumption therefore was that a lost or corrupt packet was 
relatively rare, and there would be plenty of bandwidth to accommodate any 
re-sends.

However, in the amateur packet radio network, error rates are many orders of 
magnitude greater, simply because we have to work with weaker signals, 
inferior equipment and poor sites. What’s more, we have to do it using a very 
low bandwidth.

I estimate that the average link in the UK network typically runs with a 10 
percent packet loss rate. Before you bite my head off, I appreciate that some 
are much better than that, but a good many are a lot worse.

That sort of loss rate would typically degrade a 1200 baud half duplex AX25 
link to half its potential throughput, and more importantly to real-time users, it 
doubles the average round trip time.

Whilst AX25 will still work at such loss rates, TCP/IP does not cope so well. 
Datagram-mode TCP/IP will be unworkable, and clearly, as the future is 
TCP/IP, we must get the loss rates down. 
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Causes of Packet Loss

 Poor signal/noise ratio causes mis-decoding.
 Fading, flutter, desense, reciprocal mixing.
 Distortion, multi-path.
 Impulse noise, key clicks, rusty bolt.
 Co-channel / adjacent channel QRM.
 Media access errors.

There are many causes of packet loss, some of which can be minimised by 
good engineering, and some which may be beyond our control.

Packets are mainly lost when the signal to noise ratio is too low for the modem 
to correctly decode all the data bits. This causes errors which tend to be 
randomly distributed through the packet.

Poor signal to noise ratio may be due to a consistently weak signal, or as a 
result of a temporary propagation degradations such as fading and flutter, or 
desensitisation of the receiver by a local transmitter.

Any distortion of the signal, due to multi-path propagation, over-deviation, 
poor IF or AF filter responses, or distorted audio, can confuse the decoder, 
effectively degrading the signal to noise ratio.

Even if the steady state signal is adequate, groups of bits may be damaged by 
impulse noise from vehicles, household appliances and electrical machinery, or 
the crackles from rusty-bolt effect.

The signal / noise ratio may also be degraded by the presence of unwanted  
signals within the receiver pass-band, such as other stations, sidebands from 
adjacent channels, or inter-modulation effects.

If the antenna gain is high, it is also possible for the noise floor to be raised by 
solar noise at the times of day when the antenna looks into the sun.

Finally, on a half-duplex link, packets may be lost simply because both 
stations mistakenly transmit at the same time.
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Inefficiency of ARQ

 Normal AX25 packet can contain up to 2720 bits 
& takes over 2 seconds to transmit at 1200 bauds.

 Single bit error causes loss of whole frame, even 
though 99.93% of bits were correct.

 Error correction by repetition is highly inefficient 
when bandwidth is scarce.

 On bad links, repeats and supervisory frames can 
also be lost.

Not counting the stuffed bits, a normal AX25 packet can contain up to 2720 
bits, which takes over 2 seconds to transmit at 1200 bauds.

If just ONE of those bits is mis-decoded, the CRC check fails and the frame is 
discarded. The 2719 correct bits, and all the time taken to transmit them is 
completely wasted, even though 99.93% of the packet was error free.

Moreover, it takes a significant time to detect the lost frame, and yet more time 
to request and receive a re-transmission.  There is no guarantee that the re-
transmitted frame will be error free, and if supervisory frames are lost, a lot of 
time can be wasted.

This process is highly inefficient when bandwidth is so limited.

Wouldn’t it be nice if we could USE all the error-free bits from the packet, 
instead of throwing them away?  Fortunately there is such a method, called 
Forward Error Correction…
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Forward Error Correction

 “The cat sot on the mat” contains an error, but the 
brain automatically corrects it.

 Data contains redundant information, e.g. known 
words and context, which is used to guess the 
intended meaning.

 FEC sends extra information with data, allowing 
it to be reconstructed if damaged.

The sentence “The cat SOT on the mat”, contains an error, yet you have no 
problem making sense of it, I hope!

Although the actual data consists simply of 22 ascii characters, one of which is 
wrong, they are grouped into standard sequences (called words) which make it 
easy to spot the error, and correct it by substituting the faulty character to 
produce a valid sequence.

If the faulty word is a near match to several alternative words, e.g. sAt, sEt, sIt, 
or even if the word is completely garbled, we can often guess the original with 
a high degree of certainty because the words themselves form sequences, 
called SENTENCES, which tend to obey the complex laws of grammar.

Thus “The cat SET on the mat” is rejected because it doesn’t make sense, and 
“The cat SIT on the mat” is rejected because the tense is wrong, leaving us 
with “The cat SAT on the mat”, which satisfies the rules of grammar, and the 
alliteration confirms that we have the correct word.

Sophisticated Forward Error Correction methods work in a similar way, by 
encoding the data using unique sequences which can be reconstructed if they 
get damaged.  This is usually done by sending extra information along with the 
data, which is why it is called FORWARD error correction. 

The decoder can use this extra information to reconstruct the original data if it 
becomes corrupt.
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Some FEC Methods
 Send duplicate data & vote on errors – inefficient.
 Hamming code – matrix-based parity – limited 

and inefficient..
 Convolutional code - shift register based – good, 

but large overhead.
 Block code – e.g. Reed-Solomon – good 

performance, low overhead.

The simplest form of forward error correction is to send everything twice or 
even 3 times, and replies on the statistical unlikelihood of an error occurring 
repeatedly in the same place.  This is very inefficient, and not very reliable.

Hamming Codes are generated by calculating parity on different combinations 
of the data, using matrices, and sending that parity with the data.  The error 
correction capacity is useful, but small compared to the overhead.

Convolutional codes operate on serial data, a few bits at a time.  They are 
generated by sending the data through a shift register with feedback, such that 
any bit entering the register has an effect on the subsequent bits, and during 
this process a given number of input bits gives rise to a larger number of 
output bits, thus adding redundancy.  This is a much more powerful technique 
than the Hamming Code, but also has a large overhead.

Convolutional codes are well suited to dealing with signals contaminated by 
white noise, but not so good for dealing with burst errors.

Block Codes such as Reed-Solomon calculate a complex form of parity over a 
relatively large block of data, and are particularly good at correcting burst 
errors, whilst still performing well on Gaussian noise.  The overhead is 
relatively small for a good error correction capacity, so I feel it is best choice 
for Packet Radio.
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Reed-Solomon Error Correction

 Invented in 1960 by 2 mathematicians, Reed and 
Solomon.

  Widely used (CD, DVD, cellular etc.)
 Based on Galois Field Arithmetic.
 Systematic code – Parity appended to block of 

data
 Computationally intensive – requires fast 

processor or special hardware.

Reed Solomon codes were invented at MIT in 1960 by two mathematicians, 
and have since been widely used in many applications, such as storage devices 
and communications.

They are linear block codes based on Galois field arithmetic, and the code-
blocks are generated by a special polynomial, such that all valid code-blocks 
are exactly divisible by the polynomial.

As far as I can remember, the “parity” information is derived from the roots of 
an equation which describes the original data.

The data itself is unchanged, and the parity information is appended to it. This 
is called a “systematic code”.

Reed-Solomon error correction is computationally intensive, especially the 
decoding, and requires plenty of processor power, or special encoder / decoder 
hardware.

There are now chips designed for this purpose, but fortunately modern PC’s 
are fast enough to do it, and I have chosen to implement the error correction in 
software.
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Reed-Solomon Codeword

 A Reed-Solomon codeword consists of a block 
of data “symbols”, with parity symbols 
appended.

 Maximum total block size for 8 bit symbols is 
255 bytes ((2**8)-1).

 Error Correction Capacity (ECC) is the no. of 
parity symbols divided by 2.

 Expressed as RS(n,k), e.g. RS(255,239)

A Reed-Solomon codeword consists of a block of data “symbols”, with parity 
symbols appended.

Symbols are comprised of a number of data bits, which may or may not equal 
the data byte size.  For simplicity I have used 8 bit symbols.

The maximum total block size for a given symbol size is (2**x)-1, where x is 
the number of bits per symbol.  For 8 bit symbols this is 255 bytes ((2**8)-1).

The Error Correction Capacity (ECC) of the code is the no. of parity symbols 
divided by 2, and I will refer to this later.

The characteristics of a Reed Solomon code block are usually expressed in the 
form  RS(n,k), where n is the total block size and k is the number of data 
symbols, e.g. RS(255,239).

The first figure implicitly tells us that the symbol size is 8 bits, and the number 
of parity symbols can be deduced by subtracting the second figure from the 
first.
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Symbol Errors
 One symbol error occurs when 1 or more bits in a 

symbol are wrong.
 RS(255,239) can correct up to 8 symbol errors,
 In worst case this could be 1 bit in each of 8 

symbols (8 bit errors), or in best case 8 bits in 
each of 8 symbols (64 bit errors).

 If the 8 symbols are consecutive, it will correct a 
run of 64 faulty bits, I.e. a burst error.

One symbol error occurs when 1 or more bits in a symbol are wrong.

As mentioned previously Reed-Solomon can correct a number of symbol 
errors equal to half the number of parity symbols, so a code such as 
RS(255,239), which uses 16 parity symbols can correct up to 8 symbol errors, 
anywhere in the codeblock

In the worst case this could be 1 bit in each of 8 separate symbols, and the code 
would thus correct 8 single bit errors.

In best case it could correct all 8 bits in each of 8 symbols, a total of 64 bit 
errors.

The 8 symbols could be consecutive, in which case it will correct a run of 64 
faulty bits, which could typically arise from a click.
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Coding Gain
 Probability of an error in 

decoded data block is 
lower with FEC than 
without it.

 Equivalent to an increase in 
signal to noise ratio.

 Gain is usually expressed 
in decibels.

 Improved performance for 
given SNR, or same 
performance for lower 
SNR.

The probability of an error in a decoded data block is lower if FEC is used, 
than if it is not used.

The improvement in error rate is equivalent to increasing the signal to noise 
ratio. Coding gain is the difference in signal-to-noise ratio 
between a coded channel and an uncoded channel, and is 
usually expressed in decibels.

This gain can either be used to get an improved performance from a channel 
with a given signal to noise ratio, or to obtain a given performance from a 
channel with lower signal to noise ratio.

For example on a good link it allows the use of lower transmit powers, smaller 
aerials, longer packets, or greater fade and noise immunity.

But in amateur service it is more likely to be used to improve a poor link.
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Practical Implementation

 AX25 frames plus frame relay header are 
encoded into RS(255,239) code words, giving an 
error correction capability of 8 symbols.

 Code words are encapsulated in normal HDLC 
for transmission on physical layer.

 Upon receive, HDLC CRC is ignored and the 
(possibly corrupt) codeword is decoded to an 
ax25 frame.

The scheme I have implemented in Xrouter is basically as follows:

Firstly, ordinary AX25 frames are given a 4 byte frame relay header, then 
encoded into RS(255,239) code words, using 16 bytes of parity to give an error 
correction capability of 8 symbols.

This was deemed to be the optimum compromise between error correction and 
overhead, given the next bit…

The code words are then encapsulated in normal HDLC for transmission on the 
physical layer.

Upon receive, the HDLC Cyclic Redundancy Check is ignored and the 
possibly corrupt codeword is decoded back to an ax25 frame, provided the 
number of errors does not exceed the error correction capacity of the code.
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Short Packets
 Reed-Solomon code words are fixed size, in this 

case 255 bytes.
 AX25 packets can be a lot shorter.
 Data is padded with zeros before parity is 

computed.
 Only data and parity are transmitted.
 Received data padded with zeros before parity is 

checked.

Reed-Solomon code words are based on fixed block sizes, in this case I am 
using 255 symbols of 8 bits each.

But AX25 packets can be a lot shorter than this, down to a minimum of 15 
bytes in fact.

It would clearly be inefficient to transmit a 255 byte code block for a 15 byte 
packet.

Fortunately Reed-Solomon coding allows us to transmit short packets.

The data is first padded with zeros to form a maximal-sized data block, then 
the parity over this block is computed in the normal way.

Instead of transmitting the whole code word, we only need to transmit the 
original data plus the parity, not the padding.

Upon receive, the short data is padded with zeros to form a maximal data block 
before decoding normally.
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Long Packets
 Maximum AX25 packet is 336 bytes.
 RS(255,239) code word can only 

accommodate 239 data bytes.
 9 bit symbols require data conversion & 

packet size still limited to 555 bytes.
 Solution: Packets greater than 239 bytes 

encoded into multiple equal-sized blocks 
– infinitely extendable.

Conversely, the maximum AX25 packet size is 336 bytes, but the Reed 
Solomon code word I’ve chosen to use can only accommodate 239 data bytes.

One solution would be to use 9 bit symbols, for which the code word size 
would be 511 symbols.

This would accommodate 555 bytes of data, but adds extra complexity because 
the data must be converted back and forth between 8 and 9 bit symbols.

Although this would accommodate a standard AX25 packet, it still imposes a 
limit on packet size.

The solution I’ve chosen is to encode large packets into two or more code 
words, because that is infinitely extendable.
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Interleaving

 Only used when a packet is encoded into multiple 
blocks.

 Bytes from each code block are sent alternately.
 Spreads burst errors across code blocks, so 

they’re less likely to exceed ECC of any one 
block.

When a large packet is encoded into more than one code word, they could 
simply be sent sequentially, but I have chosen to interleave them.

Interleaving basically sends bytes from each codeword alternately, and the 
effect of this is to spread burst errors across the code words, so they’re less 
likely to exceed the error correction capability of a single block.

The diagram shows two codewords, in cyan and purple, and how they are 
interleaved to form the transmitted packet.  The process is reversed on receive.

If you imagine a burst error affecting 4 consecutive bytes, you will see that 
half of them will be from the purple codeword, and half from the cyan 
codeword,
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Bit Inversion
 Non-FEC systems will see the parity bytes as 

additional data.
 In a nodes broadcast or APRS-friendly ID frame 

this would cause corrupt entries or position data.
 FEC should preferably not be used on a shared 

channel.
 As a precaution the frame is corrupted by 

inverting all the bits.

Since a valid CRC is generated when the blocks are transmitted, they will be 
received normally on vanilla AX25 systems, but they will see the parity bytes 
as additional data.

Most AX25 implementations will ignore the extra bytes on supervisory frames, 
but it is possible that some might crash.

Furthermore, on unconnected mode packets such as nodes broadcasts or ID 
frames, the parity bytes can be interpreted as node entries or APRS position 
data.

For these reasons, Forward Error Correction should preferably not be used on 
channels shared with regular AX25 systems.

But in case this is unavoidable, I have taken the precaution of inverting all the 
bits in the frame, thus rendering it invalid as far as vanilla systems are 
concerned, because the callsigns and control byte should then fail the various 
validity checks, assuming the software is good enough to have such things!
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Protocol Overhead
 Overhead is 4 +(16 * ((int)(paclen / 235) + 1)) 

e.g. for packets up to 235 bytes, an extra 20 bytes 
of parity are added. For packets 236 – 470 bytes, 
an extra 36 bytes are added etc.

 Shortest encoded frame, before HDLC 
encapsulation, is 35 bytes (15 + 20)

 In most cases the overhead is well worth it, 
because it is far less than the cost of 
retransmission.

Each AX25 packet is given a 4 byte frame relay header, and the Reed Solomon 
coding adds a further 16 bytes for each code word used.

This amounts to 20 bytes of overhead for packets up to 235 bytes, which is the 
majority of them, and 36 bytes of overhead for packets over 235 bytes.

Thus if the shortest AX25 frame is 15 bytes, the shortest encoded frame is 35 
bytes.

This may seem like a lot, but it represents less than 10 percent of a large 
packet, and is well worth the extra bytes because the cost of re-transmission is 
far greater.
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HDLC Framing

 HDLC chosen for compatibility with existing 
hardware (SIO chips, YAM, KISS TNC’s etc.)

 If flags are damaged, the frame is lost.
 Probability of mis-framing is much lower than 

probability of error in payload.
 CRC not needed, but SIO/SCC chips force its 

use.

HDLC is not the best method for framing a forward-error-correcting packet, 
but it was chosen because it is understood by lots of existing hardware.

My view was that any system which relies on special hardware is doomed to a 
poor uptake. I would rather have widespread use of a good, but less than 
perfect, system, than a state of the art system which no-one uses.

The main problem with HDLC is that if either of the two flags which delineate 
the frame are misdecoded, the frame will not be recognised as such.  
Furthermore, if any data byte is misinterpreted as a flag, the frame may be 
prematurely truncated.

Fortunately, the probability of such effects is much lower than the probability 
of an error in the payload, so forward error correction is still a viable prospect.

The two CRC bytes are not needed, and it would have been nice to do away 
with them, but the most common SIO and SCC chips do not allow them to be 
disabled., so they are simply ignored.
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Requirements (each end)
 Xrouter packet router software
 Plus an SCC Card
 Or YAM Modem
 Or TNC with modified BPQKISS firmware
 But some TNC’s using ‘RUH modems may 

require a squelching mod unless RS232 data rate 
is high.

 Could use Baycom modem if their driver 
program was modified

My Forward Error Correction scheme uses Xrouter, and some fairly standard 
hardware. Both ends of the link must run Xrouter with FEC switched on.  This 
is a simple configuration command, and it can be switched on and off on the 
fly.

It will run on SCC cards or YAM modems, and may also be used with TNC’s, 
providing they are using modified BPQKISS firmware.

Some TNC’s using G3RUH decoders may require modification to prevent the 
RS232 line being overloaded by garbage frames.

This is because the RUH decoder generates copious quantities of spurious 
HDLC flags whilst it is idling.  Without the CRC check, these are passed to the 
serial line, and if the line speed isn’t fast enough, the TNC will fill up and 
reboot itself.

To prevent this, the serial line should be run at very high speed, or ideally the 
circuit could be modified to gate off the input to the SIO chip when the 
decoder is not in a synchronised state.

A Baycom modem could be used providing someone modifies the L2 driver 
program to disable the CRC check.  One day I might get around to doing it 
myself.
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Results

 System tried over several poor RF links, and on a 
link simulator.

 In every case the reductions in packet loss and 
improvements in link throughput were dramatic.

 E.g. able to run datagram-mode TCP/IP over a 
link which, without FEC, couldn’t maintain an 
AX25 connection.

The system has been tried over several RF links, using combinations of SCC 
cards, YAM modems and BPQKISS TNC’s.

It has also been tried on a link simulator program designed to produce 
predictable bit error rates.

In every case, the reductions in packet loss, and the consequent improvements 
in link throughput have been dramatic.

For example, in one of the harshest tests, we were able to run a demonstration 
of internet via packet, using datagram-mode TCP/IP, over a link which 
couldn’t even sustain an AX25 connection without the Forward Error 
Correction.
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Limitations
 Not all packet loss problems are solvable.
 FEC can’t solve heavy desensitisation, deep QSB, 

heavy QRM, severe distortion, etc.
 This version can’t solve BER worse than 1 in 100
 Can’t use stronger FEC because limited by 

misframing.
 Can’t use G3RUH modems without 

modifications to TNC.

Forward Error Correction is not the panacea for all link problems. It must be 
understood that not all packet loss problems are solvable by software alone.

For example FEC can’t solve heavy desensitisation, deep QSB, heavy QRM, 
severe distortion, etc.  Whilst it can re-create up to 8 lost bytes, it can’t create a 
whole packet from thin air.  These are heavy engineering problems.

Because this version was required to use HDLC framing, the error correction 
gives little benefit at bit error rates which are worse than approximately 1 in 
100, because that’s the point at which packets are more likely to be lost by 
HDLC framing errors than by correctable errors in the frame contents.

However, putting this into perspective, that Bit Error Rate is 100 times greater 
than the average packet link suffers.

It is pointless using stronger error correction techniques on HDLC, as they 
would all suffer the same upper limit due to the misframing problem.

It must also be understood that this system can never achieve an absolute zero 
loss rate, because of the HDLC problem, but on a reasonably well engineered 
link, 1 lost frame in 10 million is easily achievable.

Lastly, as already mentioned, you can’t easily use this system with G3RUH 
modems unless you modify the TNC.
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Further Development
 Using suitable hardware, dispense with HDLC 

framing and embed sync in data.
 Stronger FEC – concatenation, cross-interleaving 

etc.
 Adaptive coding – stronger FEC when link 

degrades & vice versa.
 Support other L2 protocols, e.g. Frame Relay.

I must stress that this implementation of Forward Error Correction is merely a 
first version, a quick and easy fix that anyone can use. There is still plenty 
more I plan to do with it.

For example, the next version will dispense with the HDLC framing and 
instead will use sync markers embedded in the data to delineate the frame.

This should provide more robust framing, allowing the use of even stronger 
FEC techniques, such as cross-interleaving, or the concatenation of Reed-
Solomon and convolutional codes.

But it will require suitable hardware which is not based around an SIO or SCC 
chip, for example a reprogrammed YAM modem, or something completely 
new.  There are plenty of new chips to be explored.

Since the overhead of very strong FEC is not always justified, I plan to make 
the coding adapt to the link conditions, so that stronger FEC is used when the 
link degrades and vice versa.

Although I’m currently using them to carry AX25, Reed-Solomon code words 
don’t care what the payload is. Having created a new packet structure which, 
from the outset, includes an extensible  payload identifier and link control 
flags, I propose to experiment with alternative layer 2 protocols, such as frame 
relay.



  

 

  

The End

Thank you for listening
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