
UK Packet Conference held in Coventry, on 13th April, 2002 
 

Present (as reported on the Attendance List):  

G0BKN, G0EWH, G0KFS, G0MRH, G0CNG, G0NSW, G0SYR, G0TWN, G0WCI, 

G1AVF, G1BWT, G1CXE, G1DVU, G1HUL, G1IXV, G1LOA, G1ORG, G1SOG, G1YGY, 

G3MSW, G3OJI, G3XVV, G3ZFR, G4AFJ, G4APL, G4BBU, G4DIE, G4FPV, G4MTG, 

G4ROA, G4VYA, G6DZJ, G6KUI, G6TJZ, G6URP, G6VEY, G7BNK, G7CGB, G7JYF, 

G7RAZ, G7VBJ, G8ECJ, G8SFR, G8PZT, G8SEQ, G8TBF, G8YUP, M0DCM, M1EXO, 

M1FDE (50 participants)  

Apologies were received (by G8PZT) from:  

G0HDB, G1KQH, G1PLT, G3LDI, G3TIK, G4GUN, G4HIP, G4WYW, G6HJP, G7PUN, 

G7SRI, GM0HBI, GM1AHC, GM4JNB, GM4LNH, GM4PSX, GM4SUF, M1BFP, 

M1CUK.  

Preliminary business:  

The Conference was opened at 1030 by G1DVU, who welcomed participants, introduced 

himself and explained the arrangements for the day. Despite his initial reluctance, he was 

voted in as Chairman for the day. G7RAZ was elected Minutes Secretary.  

G1DVU stressed the informality of the meeting, and the hope that each presentation would 

last 20 minutes with time afterwards for question and answer sessions. The agenda was to be 

essentially as per the one circulated by G8PZT prior to the conference.  

 

Presentation: APRS, the Real Time Mode - Jim Andrews G1HUL  

APRS (or "Automatic position reporting system") was in many ways completely different to 

standard packet operation. It was designed for real-time data flow only, with no store and 

forward arrangements, and needed no BBS stations. It was designed to be on one frequency, 

and provided its own infrastructure, with higher power stations helping lower power stations.  

It was not just about GPS and positions. It was totally unconnected, existing within UI 

frames, and relying on redundancy of paths to get its beacon to the desired destination.  

There were three components of APRS - Firstly the originating station, which sends out a 

beacon. Secondly, intermediate generic digipeaters, which could operate point-to-point, and 

thirdly the receiving stations.  

Beacons could take many forms, but were designed to be a container for data (much like 

AX25). They had some pre-designed formats, but other formats allow application specific 

data to be sent transparently.  



The main device required to run APRS was a device to generate the beacon. There were 

dedicated tracker / telemetry unit (eg Tiny Trakk or Mic-E / Pic-E), but also most recent 

TNCs would do the job. Even suitably equipped PC's, pocket, palm device or Linux systems 

would enable APRS packets to be sent and monitored.  

An APRS beacon contained the sending callsign, the path, a symbol (if a positional beacon, 

e.g. car, truck, etc), and data. Receiving callsign was irrelevant.  

Beacons could report a station's position (Lat/Long/Height), but also its speed, in the case of 

a car/truck, etc. This data could be input manually or obtained from GPS equipment.  

Beacons could also be used for direction-finding. The station's kit output an APRS-

compatible string, put a signal into a computer, TNC and radio - then triangulation was 

possible.  

APRS could put "objects" on maps. These were "owned" by any station which cared to 

advertise them. They could mark events/places e.g. rallies, and could also "move" to be 

tracked by monitoring stations.  

APRS could be used to broadcast weather information: wind speed, direction, etc. Also used 

for Telemetry, broadcasting anything you liked (alarms, environmental information, etc).  

Although APRS was different to AX25, it was capable of sending messages - no large 

documents, but single line communication, generic bulletins, group bulletins. It had a system 

of acknowledgement packets as part of APRS protocol (but not AX25 RR/REJ frames).  

The path for these messages need not be known. Instead APRS used generic paths, and when 

a station responded, the path was now known, so the next beacon used an explicit path. If that 

path failed, the system reverted to a generic path to find another route.  

Queries and Status were APRS commands by which intelligent stations could be pinged and 

queried; some stations had databases of information which could be interrogated.  

In order for APRS to cover a wide area “digipeating” was required. Local "relays" worked as 

Level2 hops, helping low power stations by filling in RF "black spots". Smart digipeaters had 

wider area coverage, with some being linked to the Internet (so-called "IGates") to give even 

further coverage.  

Digipeaters had three generic aliases. "Relay" (the basic one), "Wide" and "Trace". 

Additionally APRS used "smart digipeating (using "WideN-N" and "TraceN-N").  

With APRS there was a real need to know the path the packet had taken. If an explicit path 

could not be established, messages would continue to be sent as a general broadcast, 

producing considerable QRM. Ideally, when stations repeated, they changed the generic alias 

in the path to their own callsign.  



G1HUL went on to illustrate how digipeating operated, showing examples of digipeated 

packets. WIDEn-n and TRACEn-n routines were shown, with successive stations 

transmitting diminishing Wide7-7, 7-6, (etc) packets.  

All TNC's could do L2 digipeating, and alias substitution (except MFJ's). Later Kantronics, 

TNC-2 clones and Kenwood TM-D700's could perform smart digipeating.  

At the receiving end, most computer platforms were catered for with suitable software. 

Additionally dedicated monitors were available (e.g. HamHud, D7 and D700). Typically 

these programmes displayed maps of an area, possibly linking into AutoRoute and other 

street atlases. These programmes showed output from weather stations, organized message 

management, had movement alarms, and could track stations.  

The source of most confusion and positional was defective mapping. Generating your own 

maps required an understanding of how local mapping co-ordinate systems related to the 

world wide Latitude and Longitude system.  

APRS used the GPS system reference WGS84 datum. But most maps were surveyed to their 

own country's datum (e.g. UK to OSGB36). Fortunately datum difference was at worst only 

+/- 250m, which was not normally critical. But most errors occurred due to poor map 

calibration. Ideally all stations would use the same datum when mapping.  

On the RF side of APRS, the allocated frequencies were 144.800 FM (1200 baud) & 14.105 

LSB (300 baud). Other frequencies existed, but unless you were setting up a closed system 

(e.g. for a specific event) there is no point in using any other than these two frequencies.  

There was an increasing number of IGATEs. These stations took everything they heard on 

RF and put it onto the internet. Conversely, they listened to Internet APRS traffic and relayed 

anything which was unknown locally. These stations could monitor and relay several 

thousand station beacons within a few hours, and it was interesting to monitor such things as 

earthquakes (noting the reported Richter scale reading) and track paths of satellites.  

On the net, station location queries could be made at http://www.findu.com.  

APRS could be used for more than just hobby purposes. It could serve real time 

communication and carry out important data gathering. Monitoring could be conducted of 

significant weather "events", earthquakes, volcanic eruptions, etc. APRS could be put to 

emergency use (RAYNET, vehicle tracking, search and rescue, etc). It could help with 

pathless messaging, could enable remote status monitoring and could further propagation 

studies.  

However it had a great appeal to many amateurs simply as part of their radio hobby. Many 

amateurs were using APRS (see the maps of observed stations). Perhaps packet decline was 

not as big as we thought - G1HUL showed how he had monitored over 570 stations from his 

QTH over a 2 week period.  

For those with Internet the following URL's were recommended for further study:  



http://www.aprsuk.net/ 

http://www.ui-view.com/ 

http://welcome.to/uiview/ 

http://www.ew.usna.edu/~bruninga/aprs.html 

http://www.findu.com/ 

http://groups.yahoo.com (for ui-view, aprsuk and aprs groups) 

http://www.tapr.org  (for US-based aprssig and aprsnews groups)  

During the question session, G1HUL agreed that the guaranteeing of message delivery was 

rather hit and miss over long distances with several hops. If such guarantees were required 

(e.g. for RAYNET use) a dedicated network of digipeaters was desirable.  

Jim also agreed that most APRS use was confined to weekday evening and weekends, with 

relatively few users operating 24/7.  

He tackled the issue of congestion caused by usage of one frequency, stating that congestion 

was not particularly an issue, although it would be if there more reliable links in the UK. 

Apparently US stations often discussed congestion.  

Jim invited contacts for advice on APRS, advising use of e-mail in the first instance. His 

details:  

Jim Andrews, G1HUL  

E-mail: jim@stuckinthemud.org  

Tel: 01530 249218 

 

Presentation: XROUTER Network Infrastructure Software - Paula G8PZT  

XROUTER, written by Paula, G8PZT, was node software, comparable in many ways to 

BPQ, but with superior performance and many more facilities. It may be of interest to 

ordinary packet users, to those who wished to establish a node for use by other packeteers, 

and to BBS sysops who wished to try out an alternative, more flexible RF front end to their 

systems.  

More correctly termed a "packet routing system", XROUTER incorporated L2/L3/L4 

capabilities (i.e. AX25, TCP/IP and NET/ROM), plus APRS functionality (with messaging 

shell), an inbuilt PMS, a chat server, and support for other packet applications such as 

WinPack, BBS programs, etc.  

http://www.aprsuk.net/
http://www.ui-view.com/
http://welcome.to/uiview/
http://www.ew.usna.edu/~bruninga/aprs.html
http://www.findu.com/
http://groups.yahoo.com/
http://www.tapr.org/


XROUTER was developed because of dissatisfaction with existing node software. Many 

nodes and the vast majority of packet mailboxes used G8BPQ's Packet Switch, but "BPQ" 

had major shortcomings, and its author appeared to have ceased supporting it:  

BPQ suffered from: stability problems, crashing on frames > 256 bytes, running out of 

buffers, poor load balancing / session flow control. It had limited nodes table / circuits / 

routes / sessions, static timings, and data / nodes / MH corruption.  

For the user, BPQ had no proper help, limited info, and no TCP/IP commands, Commands 

had to be in one packet, and the command line was not robust (it was easily crashed).  

For node operators, BPQ was not friendly: you couldn't set the time / date, the configuration 

file had to be pre-compiled, there was no BUDLIST, and the VALIDCALLS size was 

limited. There was no watchdog, no screensaver, no remote control, a poor console interface, 

only a single console session, no chat server, no PMS, only single password, can't kill 

sessions, no domain resolution, no logging, no capture.  

XROUTER was created to provide an improved alternative to BPQ, addressing each of the 

shortcomings listed above. The result was a piece of software which would fulfil the role of 

node (or router) and would offer many additional facilities to user and sysop alike.  

XROUTER's hardware requirements were modest. Any PC from XT to Pentium, 640k 

memory, any video type (or run without VDU), an interface to the outside world (COM ports 

etc), and either a floppy, hard or RAM drive. It would run under DOS (3.3 onwards), DR-

DOS, and Windows 95/98 (any version of Windows which had DOS emulation). It would 

also function with Desqview.  

It would operate with the following hardware interfaces: COM ports (all types of UART 

chips), shared UART cards, 8530 SCC cards, Ethernet cards, keyboard & VDU, and any 

hardware for which an external driver exists.  

XROUTER supported the following COM port options: KISS (all modes) SLIP, PPP, 

Baycom modems, YAM, Maxpack, NET/ROM backend, telephone modems, ASCII (dumb 

terminals) hardware / software flow control options. Its support for SCC cards included 

Baycom, DRSI, PA0HZP, Thor RLC100, PacComm PC100 / 120, and ITACARD.  

Concerning AX25, it was compatible with versions 1&2 and also with Modulo-128 (EAX25). 

It was capable of digipeating, “digicasting”, and made intelligent adjustments of maxframe / 

paclen / frack, thus enhancing traffic throughput. Packet frames could be "piped" from port to 

port. Independent ID beacons could be set for each port, and per port BUDLIST and 

VALIDCALLS could be configured. There was port interlocking and split port operation. It 

offered comprehensive MHEARD lists, with adjustable sizes.  

XROUTER had special NET/ROM features: Unlimited nodes / routes tables, dynamic L4 

parameters, statistical multiplexing, proxy connections, nodes broadcast data validation, 

routing loop avoidance, echo, route record, INP3, and extended nodes / routes commands.  



It also offered easily-configured TCP/IP features, as it incorporated an integral IP router, 

using datagram, and Virtual Circuit, NET/ROM, and encapsulation modes. Its TCP/IP 

commands were available to users, for telnet access and egress, with a DNS client and server, 

too. It was highly adaptable, supporting AXIP and AXUDP tunnelling protocols, dial-up 

networking, network address translation, IP masquerading, and Internet connection sharing, 

all respecting the RIP89 routing protocol.  

APRS functionality 

XROUTER's APRS features were considerable. It was capable of full "generic" digipeating, 

MIC-E encoding, and packet <> internet gating. It had a messaging shell for APRS and UI-

VIEW. Its MH lists displayed APRS position, distance and bearing. It maintained best DX 

information and its ports could be configured to function with APRS only. It responded to 

both APRS and UIVIEW queries.  

Its digipeater was capable of full generic digipeating - relay, wide, trace, widen-n, tracen-n - 

and had selectable digipeat modes, as well as pre-emptive digipeating. ID beacons could be 

digipeated, and even NET/ROM digipeating was possible.  

Its messaging shell allowed non-APRS users to exchange messages with UIVIEW/APRS 

users, as well as reading bulletins and announcements. Message paths were selectable by the 

user, and duplicate prevention ensured appropriate use of bandwidth.  

It also had an APRS IGATE. This allowed bi-directional packet <> internet gating, 

comprehensive traffic filtering, and independent filtering per direction. Unidirectional gating 

was selectable, and the software honoured NOGATE and RFONLY commands. It could 

connect to multiple servers, and offered automatic reconnection upon link failure, as well as 

blacklisting of dead servers.  

Other additional features  

XROUTER had an integral PMS, allowing the storage of messages to and from the sysop. 

This disk-based message store handled up to 65536 messages and, unlike TNC-based PMSs, 

allowed concurrent users. An additional PMS callsign and alias was possible. The PMS was 

accessed by PMS command, by L2 connection to PMS call/alias, or by L4 connection.  

XROUTER also had a CHAT server. This could be accessed from the sysop's console or via 

AX25, NET/ROM, & TCPIP. It offered 256 local "rooms" (channels), 32512 public (server-

interlinked) rooms, unlimited users per room, unlimited rooms per user, anarchic peer-peer 

linking topology, all with minimal setting up, plus activity logging.  

XROUTER's command interface would be familiar to any BPQ node user, as the user 

commands were entirely BPQ-compatible. There was a comprehensive extended command 

set, with up to 16 command aliases, with built-in syntax help. It also offered hideable 

command aliases, a graduated help system, and an extendable INFO system.  

Running an XROUTER node  



An XROUTER node could be controlled by a sysop, both locally and remotely. Most 

parameters were hot-configurable. The system time / date was adjustable; there were 

multitasking DOS commands, and even a line editor for text files. XROUTER allowed 

simple programs and batch files to be run at the same time. Transmissions on any port could 

be disabled / enabled, and there were inbuilt manual pages, along with transaction logging.  

Remote maintenance could be carried out via RS232, Ethernet, dial-up or radio links. 

XROUTER had a secure password system, offering individual sysop passwords. The node 

could be remotely restarted or rebooted. It even had an FTP server with secure login. For 

diagnosis purposes, trace display could be viewed remotely. External hardware control and 

monitoring was also possible (via parallel port).  

The sysop was offered a console interface. It had a screen saver - automatic and manual, up 

to 5 independent consoles, fully configurable display options, a review buffer on each 

console, and an editable command line. Each console was ANSI colour compatible. There 

was also a DOS shell facility. There was even a console-less option (e.g. for remote nodes).  

XROUTER enabled the sysop to trace packet traffic most comprehensively. All protocol 

layers were independently traceable. Ports, too, can be independently traced. Sent and 

received packets could be traced in different colours (the colours were configurable), and the 

whole traced activity could be captured to file. 

There was a "Message of the day". As a precaution against system lock-ups, there were two 

"watchdogs" - both software and hardware - as well as comprehensive statistics to enable 

sysops to check the health of their system. All this is offered in addition to the proven 

reliability of XROUTER.  

Sysops could run other packet applications with XROUTER. The application support 

required Windows or Desqview and a TSR, provided 8 and 16 bit BPQHOST API, and 

offered access via command line, AX25 and NET/ROM. It supported up to 8 applications, 

with up to 64 streams, and each application could have its own callsign, alias, name and 

L4QUAL. Access control was fully configurable, and applications could be in any order. 

There was also a comprehensive socket-style API.  

Summary - miscellaneous strengths and limitations  

XROUTER had been designed for maximum usability by BPQ-familiar operators. It used 

basic commands which followed the BPQ syntax, and its configuration keywords were 

similar to BPQ. It could use BPQKISS TNC firmware, and its nodes / routes save file used 

BPQ format.  

XROUTER could be used in a wide range of applications. As well as being a QTH-based 

front end router, it could be a remotely sited router, offering support to BBS / APRS / Cluster 

/ PMS usage. It could act as an APRS digipeater / IGATE, internet connection sharing router, 

or even as a Windows <> packet radio interface.  



Its limitations were as follows. It was not a TSR (which would make it too big and complex). 

It required DOS or a DOS window. Its application support required Windows or Desqview. 

Linux & 32 bit versions were not (yet) available. 

Furthermore, it only supported 25 lines * 80 cols * 16 colours. It didn't directly use expanded 

memory. Because it was a router, it has no SMTP, POP3, or BBS capability. It would not put 

a TNC into KISS mode. The source code was not available to the public. Its incompatibility 

with WW Convers server, however, was being reviewed.  

XROUTER was obtainable by contacting the author (Paula) as follows:  

Packet - G8PZT@GB7PZT.#24.GBR.EU  

Alternatively, those with internet access could download XROUTER from:  

Paula's website - http://www.g8pzt.pwp.blueyonder.co.uk  

Support group - http://groups.yahoo.com/group/xrouter 

 

Announcements regarding Clearance applications - Steve G8SFR  

G8SFR advised Conference that, since Christmas, there had been an increase in the number 

of 70cms clearance applications being rejected. This was due to unspecified objections from 

the MOD, the primary user.  

The frequencies mainly affected were at the top end of the 70cms band, although 433.650 had 

suffered from similar rejections. Even split frequency operation (where these frequencies 

would be used for receive only) were being affected.  

G8SFR urged those who already had clearance to use these frequencies to do so, thus 

asserting our right to use what had been cleared. But he also advised users of frequencies in 

the 431 area that a possible shift towards 430 might become necessary.  

Otherwise he advised that normal clearances were going through fairly quickly (10-12 

weeks).  

He also took the opportunity to reveal the new, simplified, application form available from 

the DCC for applying for Mailbox operation and clearance. He reminded Sysops of the need 

to have a current shutdown procedure in place, lest a check should be undertaken by the RA. 

Advice from the local RIS office about procedures was also advised.  

 

Presentation - "AX25/IP integration experiences" - G3ZFR  

Roger G3ZFR spoke of the desirability of increased cooperation between AX25 and TCP/IP 

packet operation - both at the level of frequency usage and also from a point of view of 

software applications.  

http://groups.yahoo.com/group/xrouter


He outlined the rise of both modes, but indicated how TCP/IP had declined more quickly 

over recent years, becoming perceived as a mode for enthusiasts only. He posed the question 

as to how TCP/IP could be made more popular for users, particularly given that most 

computer operators already operated many TCP/IP applications within Windows.  

He asserted that, whilst not ideal on a user access frequency, AX25 and IP would co-exist on 

a point-to-point link. On shared channels however, due to AX25's aggression, TCP/IP would 

suffer under competition (and in the face of retries) but co-existence was feasible. Certain 

parameters may need tweaking, and the problem of gatewaying bulletins between the IP and 

AX25 BBS's still needed watching, but cooperation was the key.  

He suggested that one solution would be for all nodes to support AX25, NETROM and 

provide IP routing. Local provision would offer users ideally at least one AX25 port and one 

IP port. An increase in high-speed links would be desirable, although he acknowledged the 

reduction in RF engineers involved in packet, and agreed that some very ambitious high 

speed projects currently being mentioned were beyond what was required - 9600 links would 

be quite fast enough to deal with current and projected levels of traffic. Mention was made of 

the high speed hardware to be exhibited later on in the day.  

  

Presentation - "Enabling Windows users to access TCP/IP hubs over 

radio" - G3ZFR  

Following on from his previous comments about everybody having TCP/IP courtesy of 

Windows applications (IE, Outlook, etc), G3ZFR went on to refer to his TNC2PPP EPROM.  

This device, when inserted into a Tiny-2 (and other TNC2 clones), would allow it to be seen 

by Windows as a modem, and thus the native Windows IP application could be run - with 

very little modification - over radio.  

Minor changes were still desirable. Users needed to adjust the Windows registry to ensure 

that broadcast packet frame length does not exceed 256 bytes. G8ZFR also anticipated further 

refinements of his own, particularly to avoid the initialising packets, put out at start up, which 

consume bandwidth unnecessarily. The use of SLIP as well as the currently supported PPP 

may be envisaged.  

Users of Tiny-2 TNCs wishing to use Windows applications for IP over radio would need 

one 27C256 EPROM. The binary file for blowing onto it (along with instructions for 

installation and configuration) was obtainable, either from Roger (G3ZFR@GB7COV) or 

from his internet site (http://www.g3zfr.freeserve.co.uk).  

G7RAZ also added that he had written notes for W98/NT/2K users who wished to set up 

SV2AGW's TCP/IP driver, enabling them to achieve them same as the above - i.e. to run 

Windows IP application (IE, Outlook, etc). Several participants availed themselves of these 

notes.  

 



Presentation: PZT AX25/IP BBS Software - Paula G8PZT  

Of potential interest to existing mailbox (GB7nnn) sysops, PZT BBS was a combined AX25 

and TCP/IP mailbox "store and forward" system. It had all the features of standard AX25 

BBS systems, such as FBB and NNA (including a file storage and retrieval system), but had 

additional TCP/IP functionality, similar to JNOS and certain Linux mail handling software - 

including a Web server, an FTP server, an SMTP server/client and a POP3 mail server. This 

meant it could serve both the AX25 and IP-using communities.  

It could be accessed by any of the following interfaces; keyboard/VDU, serial ports, 

telephone modem, and Ethernet cards. Users and sysops could access it using a dumb 

terminal, a Hayes-compatible modem, a TNC, a serial link (using TCP/IP over slip), with 

Ethernet or dialup, via TCP/IP over radio, or via AX25 (including Netrom).  

 Hardware requirements were modest. On the hardware side, the minimum would be an AT 

compatible PC, with 640k RAM, a mono VDU, and a fairly fast drive (the BBS runs on a 

minimum of 3MB, with typically 40MB of working space being used). Additionally at least 

one COM or Ethernet port would be required to talk to the outside world - with radio or 

telephone interface hardware as required.  

Software requirements were also simple. The operating system must be DOS3.1 up, or a DOS 

window in Windows. A RAM-disk was optional but useful. For AX25 use, BPQ or 

XROUTER node software was needed. If Ethernet was used, appropriate NIC drivers would 

be required.  

PZTBBS had been designed with maximum compatibility in mind. It was fully compatible 

with other BBSs, was Y2K compliant, had a command set based on the W0RLI standard, 

used a standard BPQHOST interface, and worked with RFC822 mail compliance.  

For the BBS users, it supported a range of common packet practices, such as mail collection 

via unproto broadcasts, as well as the /ACK method of obtaining acknowledgements. Users 

could use any major AX25 programme (such as Sally, Winpack, etc) and even Windows 

TCP/IP client programmes to access the BBS.  

It has been designed with an emphasis on stability. By using DOS rather than Windows - as 

well as using the base 640k memory (to avoid memory contention) - it runs most reliably. 

Inside the programme were a host of error checking routines which ensure appropriate 

configuration, installation and use.  

Speed had also been a design objective, and the programme used tight, optimised code. The 

use of indexes and a carefully designed directory structure minimise OS problems. By using 

the RAM-disk facility, even faster operation was obtainable.  

A minimum of "Housekeeping" was also a feature of PZT BBS. No downtime was required 

for maintenance, since housekeeping was performed as a background task. No expiry routines 

were required, as the BBS used a fixed number of active messages, with a message number 



carousel, meaning that the oldest messages are eventually overwritten. The programme would 

also happily function on a fragmented hard disk.  

Mail storage and retrieval  

PZT BBS provided up to 20 message boards (mail areas), with single or multiple topics per 

area. Included in this were two areas for local, private mail and for mail in transit to other 

mailboxes. These areas are entirely configurable by the sysop (in name, contents and size). 

To enable access from automated packet programmes such as Winpack, there was also a 

single area compatibility mode.  

Messages could be created in the standard ways, i.e. by direct entry (SP, SB, SR) and by 

creating messages from files. Optional signatures were available. Additionally, use can be 

made of a web form when using the HTTP interface.  

Listing and searching for messages were done in the usual way. This could be forwards or 

backwards, as well as from and between certain points. The TO, AT, MID, and SUBJECT 

fields could be interrogated, and specific text could be sought. Exclusions could be 

incorporated, lists could be multi-parameter, as well as "all" or "recent". Again this could be 

done additionally via a browser interface.  

Messages could be retrieved by being read at the command line, by using the HTTP interface, 

or by using POP3. When reading them, this could be with or without full headers, and 

required the number of the message only. PZT BBS allowed multiple reading, the reading of 

new mail only, as well as HTML to text translation, and pagination.  

Messages were forwarded between BBSs using a variety of formats. PZT BBS was capable 

of MBL forward-reverse and reverse-reverse, as well as FBB block and compressed 

forwarding. The programme had an SMTP server and client, which incorporated bi-

directional SMTP <>NTS gating facility. Mail could also be exchanged by telephone, or 

telnet. Mail prioritisation (smallest first, SP before SB, etc) was incorporated. Additionally, 

mail can be forwarded to file, for emailing or posting.  

Network problems were fully catered for. In the event of a normal forwarding route failing, 

PZT BBS had a facility for route fallback. Repeatedly failing peers were blacklisted, with the 

conditions for the blacklisting being configurable. Sysops were also notified of ping-pong 

messages, unknown routes, and items of looped or rejected mail.  

Various additional sysop controls of mail forwarding were: forward upon receipt, control of 

day, time, size, type, port, as well as separate BBS & PMS forwarding runs, configurable run 

intervals, transaction logging, R-line stripping, and 3rd-party to private mail conversion.  

PZT BBS was also capable of generating targeted bulletins (for example SB RALLY @ 

44.GBR or SB ALL @ JPN.AS), which would be tunnelled to their destination area, instead 

of using "flood" distribution. This method left no "snail trail" on PZT systems - the in-transit 

bulletins being invisible - and required no special setup. If adopted by other authors, it would 

make FBB's REDIST server redundant.  



File storage and retrieval 

Just as with messages, so also files could be stored and then accessed by various methods. 

From its W, U and D commands, PZT BBS switched into “files” mode - using file "areas", 

each of which could have sub-areas. The BBS had an integral filing system (PZTDOS) with 

DOS-like commands. The file transfer protocols supported were: ASCII, YAPP, XModem, 

Xmodem-1k, as well as real-time 7plus.  

In line with its IP compatibility, PZT BBS allowed FTP up/download. The FTP server 

permitted both passworded and anonymous access, and the sysop could configure each user’s 

access rights individually (e.g. root directory rights, read/write/execute rights). User groups 

could be set up, and the FTP server accepted “/” and “\” in any combination. It had an 

extensive command set (35 commands), and was compatible with a large range of Windows 

FTP clients.  

Additionally the HTTP interface could be used for file retrieval.  

Services and servers  

PZT BBS had a cross between the WWW and TeleText, called "TextWeb". This facility 

offered users variable sized pages, numbered 1-999, which incorporated plain text, ANSI or 

HTML. It offered freedom of layout, and users could read existing pages or upload 

new/updated pages of their own. It had an automatic page updating facility.  

PZT BBS has an HTTP server, which was compatible with IE5, offering static and dynamic 

pages. It incorporated Perl-like script commands for the BBS interface, as well as transaction 

logging.  

The programme had a comprehensive White Pages database, which included users' email 

addresses. It featured extensive data validation algorithms, with automatic refresh and update 

to next level, lockable records, a record editor, and comprehensive search facilities.  

PZT BBS had several inbuilt servers, such as: ECHO, PING, REQBUL, REQDIR, REQFIL, 

REQCFG and WP. Additionally it worked with various external servers, such as LSTBUL 

and LSTSRV, with some 3rd party servers (e.g. AUTO7P) also being catered for.  

The programme also featured "Doors". These were external programs designed to encourage 

user interactivity. Examples might be: an e-mail program, an adventure game, NGR <> QRA 

converter. Anybody could write suitable "doors".  

There was also a Gateway facility, by which users can connect from port to port, or from 

mode to mode. (E.g. a radio user could connect to a telephone port, or a TCP/IP user could 

switch to a Netrom port). As in other areas, access to the gateway was controlled by the user 

privileges, which in turn are configured by the sysop.  

Features for sysop usage  



Sysops could offer users 4 prompt levels: novice, verbose, regular, and expert, each offering 

different levels of support. Users could choose to receive data which included ANSI colour. 

There was a comprehensive help system. For security, there were optional passwords, and for 

ease of reading, there was optional pagination, with selectable lines per page. Users could be 

offered callsign aliasing, to enable those with two callsigns to collect both sets of mail at one 

session. There was also a Ping and Telnet shell.  

Sysops had at their disposal a comprehensive set of DOS-type commands, for file 

management. They could review held mail, and when doing so, are presented with the 

reason(s) why the message is being held. They could control forwarding runs, and kick off 

users.  

For help and diagnostic purposes, there was an inbuilt sysop manual, a forwarding error log, 

facilities for session tracing or capturing, and (for testing) sysops could simulate a user login. 

They could import and export mail, open and close ports, and rescan mail. Depending on the 

level of changes made, they could re-initialise or restart the programme. They could even 

reboot the computer remotely, if desired.  

Full editing facilities were available with PZT BBS. The sysop could make use of an inbuilt 

line editor for any text file. User records could be created / deleted / edited. There was also a 

message header editor, a WP record editor, and a password privilege editor. All aspects and 

fields of messages could be edited - type, status, to, from, at, subject, and message text.  

PZT BBS had integral message filtering, which examined both subject and content. 

Depending on its configuration, it would hold locally entered mail, optionally allowing 

validated users to bypass local hold. Alternatively the sysop could configure the filter to auto-

hold messages, depending on any of the fields (type, to, from, at). Holding could also be done 

manually. Held messages were flagged on the BBS status line and at the sysop prompt, 

inviting him to review, release or delete as appropriate. PZT BBS would also hold on R-lines 

- thus allowing the filtering of internet imports, out of date messages, etc.  

Messages could be exported for file either automatically or manually. Each message could be 

exported to many files, in overwrite or append modes, along with exporting in MBL or plain 

text mode. Exported mail could contain full, first or no R: lines, with wildcard matching on: 

type, to, from, at, MID, subject or content.  

Messages could be imported from file, either at start-up or on request, or every so many 

minutes. Messages were accepted in MBL format (compatible with other BBS), and 

importing was a background process, enabling the BBS to continue running as normal.  

PZT BBS had a versatile file management capability. Sysops could copy messages to file and 

make messages from files. With PZTDOS, all files could be listed, copied, created, moved, 

renamed, deleted, and viewed. Directories, too, could be created and deleted. For remote 

sysoping, there was a line editor, and at the BBS console, a full screen editor was available.  

The BBS Console message editor was full-screen and fully multi-tasking (ie. operating 

entirely concurrently with the functioning BBS). It edited a copy of the file (for safety), using 



a Wordstar command sub-set, and had extensive cursor movement controls, allowing the 

sysop to block copy, move, delete, write to file, insert from file, and search.  

The Console also enabled the sysop to shell out to DOS from there, have terminal sessions, 

and chat with users. A bell sound was configurable to allow the console to relay sysop 

paging. Similarly it had an optional connect / disconnect bell. A simple message browser was 

also available.  

The Console's main function, however, was to display BBS status information, which it dis 

via a split screen layout. Every port had a window, for monitoring the activity of each 

connected user. Each window had configurable colours and positions, and there was an 

additional scroll-back facility on the sysop's window.  

For remote operation, PZT BBS provided a "virtual console", offering an exact image of the 

main console, along with the same facilities. This could be enabled and disabled at will over 

an RS232, dialup or Ethernet connection, and required only an ANSI terminal.  

PZT BBS enabled the sysop to feel in control of the mailbox. It was extensively 

customizable, with configurable texts, colours, information files, etc. It also offered highly 

configurable security levels and user privileges, with separate passwords for radio, telephone, 

POP3 and FTP access.  

Benefits and limitations  

The principal advantages of PZT BBS were: the multiple mail areas, which facilitated the 

selection of desired reading material; the integration of AX25, IP and PSTN, which 

encouraged maximum participation in a BBS, and encouraged network cooperation; the 

remote control and virtual console, which allow considerable ease of sysoping; the IP 

facilities (web browser interface, SMTP, POP3, FTP), which satisfied the IP enthusiasts as 

well as catering for users of native Windows applications; the stability and modest 

requirements of the programme, which reduced key burdens of sysoping; and finally its rapid 

development undertaken by a responsive local author, which generated confidence amongst 

its user base.  

On the side of perceived disadvantages, WA8DED host mode was not yet supported, it only 

ran under DOS (or in a DOS window). Linux and 32 bit Windows versions not expected in 

the short term. There was no support for NNTP (although this could be addressed), and there 

was no support for PPP linking (to come). To quote the author, "It's a BBS - not a TCP/IP 

"hub".  

PZT BBS was obtainable by contacting the author (Paula) as follows:  

Packet - G8PZT@GB7PZT.#24.GBR.EU 

Alternatively, those with internet access could download the programme from:  

Paula's website - http://www.g8pzt.pwp.blueyonder.co.uk  



Support group - http://groups.yahoo.com/group/pztbbs    

 

Presentation - "Thames Valley IP Group Projects" - G8ECJ  

Robin, G8ECJ introduced the group, their preference for IP with Linux, and outlined a 

recently developed piece of hardware, the G4XYW 9k6 modem, based on a Atmel AVR 

RISC processor, and intended for the OptoSCC board. A sample was circulated. 

The modem would be of particular interest to those needing to link to stations equipped with 

Kantronics 9k6 TNCs in the light of the work done on the transmitted wave form. It was 

claimed to be marginally better than an RUH 9k6 modem.  

To improve performance they may introduce a couple of extra chips to improve the 

interfacing of the modem to the PC's RS232 port. They will also be developing an interface to 

USB ports, given that the RS232 standard may not be around for very much longer.  

Secondly he described the group's Regen controller, based on modem hardware. It keyed up 

on squelch open or DCD from modem selectable active high or low. It sent flags when no 

data or when handling invalid data, detecting Morse idents etc and masking them out. It did 

CWID, which was programmable on a per CPU basis, although its transmission was time 

dependent and could crash a packet frame already in transmission.  

Thirdly G8ECJ demonstrated a Front end processor board, suitable for installing inside a PC. 

It contained a 64180 chip as used in some TNCs, 2 SCC chips, giving scope for 4 radio ports. 

It could be connected to a modem (Baycom or G4XYW) or via SLIP to a Windows PC, or 

via KISS to an existing TNC. A few were offered for sale at low cost...  

Fourthly a PC motherboard was exhibited, which was a self-contained 4 port node with 

processor on board. These were being offered free of charge.  

Finally G8ECJ described the "Morelia" BBS software, written in Python (for Linux users) by 

Andy G4XYW. The BBS software - still in beta stage - aimed to interface both AX25 and IP 

users to news and mail. More details would become available from the TVIPUG in due 

course.  

Presentation - "The MAXPAK local area network" - G0CNG  

Chris, G0CNG, chairman of MaxPak and sysop of GB7MAX, outlined the main nodes and 

BBS's in the Midlands. Centred on GB7WV in Wolverhampton, he explained the role of the 

network as it linked to GB7MAX and the BBS's radiating out from it. He bore with good 

grace the couple of observations made about the use of some frequencies and callsigns not in 

line with DCC guidelines.  

 

Presentation - "The MAXPAK MAX02 packet modem" - G4VYA  



Joe, G4VYA explained the origins of the modem. It was his design, adapted from the YAM 

modem designed by Nico Palermo. It could use either the power supply from the PC or from 

an external source. He recommended the use of AGW software, as this enabled the tnc to be 

configured to be a 1k2 or a 9k6, via the program's internal tnc commands - ie. no hardware 

adjustments were required when changing from a low to a high speed modem.  

He also recommended visiting the Maxpak web site to download a slightly doctored version 

of AGW, which would overcome some problems experienced by users of Windows 95.  

 

Discussions  

The Conference had run significantly over time. Participants were beginning to need to get 

away as the discussions were beginning (at 1700). 

G1DVU attempted to chair the consideration of the first topic ("Packet Radio, present and 

future") and some brief general observations were made. However, with initially discreet 

departures becoming less discreet and with informal discussion groups which were becoming 

more vocal, G1DVU wound up the proceedings, thanking among others Roger G3ZFR for 

organising the venue, and especially Paula G8PZT for having proposed the event and having 

cajoled people into coming and participating.  

 

Minutes by Mike Wager, G7RAZ @ GB7WIS.#24.GBR.EU  

MikeWager@aol.com 


