
Packet White Paper: 222
Status: Informational
Date: June 2023
Author: Paula Dowie

 Remote Host Protocol Version 2

Abstract

 Remote Host Protocol (RHP) is one of the Application Programming
 Interfaces for the "XRouter" Amateur Packet Radio networking
 software. RHP allows applications, sited either locally to XRouter,
 or remotely from it, to use XRouter as a multi-protocol "packet
 engine". RHP allows developers to write Packet Radio applications
 without having to write a Packet networking stack.

 RHP version 1, described in [1] used an extensible binary packet
 format. This memo describes version 2, which uses JSON messages
 instead. Version 2 is more verbose than version 1, but is more
 suited to modern paradigms.

Status of This Memo

 This memo provides information for the Packet Radio community. This
 memo does not propose a standard, but it describes an existing one.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2023 Paula Dowie. All rights reserved.

Table of Contents

 1. Introduction
 1.1. Motivation
 1.2. RHP Sockets
 1.3. RHP2 Messages
 2. Overview of RHP2 Message Types
 3. RHP2 Message Types In Detail
 3.1. The AUTH Message
 3.2. The AUTHREPLY Message
 3.3. The OPEN Message
 3.4. The OPENREPLY Message
 3.5. The ACCEPT Message
 3.6. The STATUS Message
 3.7. The STATUSREPLY Message
 3.8. The SEND Message
 3.9. The SENDREPLY Message
 3.10. The RECV Message
 3.11. The CLOSE Message
 3.12. The CLOSEREPLY Message
 3.13. The SOCKET Message
 3.14. The SOCKETREPLY Message
 3.15. The BIND Message
 3.16. The BINDREPLY Message
 3.17. The LISTEN Message
 3.18. The LISTENREPLY Message
 3.19. The CONNECT Message

 3.20. The CONNECTREPLY Message
 3.21. The SENDTO Message
 3.22. The SENDTOREPLY Message
 4. Address Formats
 4.1. AX25 Family
 4.2. NETROM Family
 4.3. INET Family
 5. List of Error Codes
 6. Typical Session Flow
 6.1. Outgoing Connection
 6.2. Incoming Connection
 7. Security Considerations
 8. Caveats
 9. Feedback
 10. References

1. Introduction

 RHP is the acronym for REMOTE HOST PROTOCOL, so called because it
 allows a "host" application to be located remotely from XRouter,
 effectively using XRouter as a multi-protocol "packet engine".

 The protocol allows applications, sited either locally to XRouter,
 or remotely from it, to access the XRouter protocol stack at many
 ISO layers, including layer 7, i.e. XRouter's command line interface.

 The original RHP, described in [1], used an extensible binary packet
 format. It was perfectly adequate, but very few applications were
 developed to use it.

 The world has moved on a long way since 2004. Today's application
 developers have little desire to craft binary packets, and it is
 likely that not many possess the skills to do so.

 This memo describes RHP version 2 (RHP2), which uses JSON messages
 instead of binary ones, and outlines the JSON message format.

1.1. Motivation

 The motivation for this protocol upgrade was the need to provide a
 modern socket-like API for the "XRouter" multi protocol Amateur
 Packet Radio networking software, and thus to stimulate the
 development of new applications.

 Modern applications tend to be browser-based. The age of standalone
 applications is over, and very few "packeteers" are interested in
 command-line interfaces.

 Whilst XRouter provides both HTTP and REST interfaces, both protocols
 have drawbacks. HTML pages tend to be fixed-format. The node author
 designs the pages, and the users are stuck with them. The sysop
 might be able to tweak the CSS, but the basic layout is set in stone.
 Node authors make terrible UI designers.

 REST APIs are better, because they allow application developers to
 access the raw data, and display it however they wish. The data is
 decoupled from its presentation. Very little skill is required to
 write Javascript, hence there are plenty of UI developers capable of
 doing so. Hence more chance that someone will write a new UI.

 Both HTTP and REST behave poorly when it comes to SESSIONS, as they
 are stateless by design. There are workarounds, but they are

 cumbersome and barely satisfactory.

 RHP allows developers to write Packet Radio applications without
 having to write Packet Radio networking stacks. What's more, the
 applications don't have to run on the same machine or operating
 system as the Packet stack.

 RHP is NOT a user interface. It is a machine-to-machine interface,
 mainly for ISO layers below the application layer. It treats XRouter
 as nothing more than a "packet engine".

 RHP version 2, sometimes referred to as "RHP2" uses JSON instead of a
 binary format, and adds the option of operation via Websockets. JSON
 is easy to read and debug, and modern languages have plenty of
 inbuilt support for both JSON and Websockets.

1.2. RHP Sockets

 At the heart of RHP is the concept of "sockets", i.e. communication
 endpoints. These are functionally similar to Berkeley (BSD) sockets,
 but with some extra features.

 The diagram below depicts a client using RHP to control a socket, and
 to exchange data with it. In turn the socket is interacting with a
 target system using the AX25 protocol. Data is passed between the
 client and target via the socket, whilst RHP control signals pass
 only between client and server.

 .--------------.
 .--------. | .--------. | .--------.
 | client |<------------->| socket |<------------>| Target |
 '--------' RHP | '--------' | AX25 '--------'
 '--------------'
 Server (XRouter)

 Sockets must be "opened" before use, and "closed" after use. When a
 socket is opened, a numeric "handle" is returned, which must be used
 for all subsequent operations via that socket.

 When opening a socket, the client must specify a "protocol family",
 and a "mode".

 The currently available protocol families are as follows:

 Mnemonic Layer Usage
 --
 UNIX 7 XRouter CLI and applications
 INET 3/4 TCP/UDP/ICMP/IP/DNS etc
 AX25 2 AX25, APRS, Digipeating, custom protocols
 NETROM 3/4 NetRom datagrams, streams, custom protocols

 The available socket "modes" are as follows:

 Mnemonic Meaning

 STREAM Ordered, reliable octet stream, (LAPB, TCP, CLI etc)
 DGRAM Unreliable datagram (AX25 UI, UDP, NetRom L3 etc.)
 SEQPKT Sequenced, reliable packets (ax25 only)
 CUSTOM User specified protocol
 SEMIRAW Addresses + raw payload
 TRACE Decoded headers plus payload data
 RAW Complete raw packet, no separate headers

 Not all modes are available for all protocol families.

 Within the AX25 family, stream mode would be used for normal ax25
 connections, datagram mode for APRS, trace mode for monitoring packet
 activity, and raw mode for custom packet tracing / injection.

 Within the NETROM family, stream mode would be used for normal L4
 connections, DGRAM for NDP (NetRom Datagram Protocol) datagrams,
 CUSTOM for "protocol extension" frames, SEMIRAW for L3 headers plus
 payload, TRACE for tracing NetRom from layer 3 up, and RAW for
 raw layer 3 operations, such as Nodes and INP3 broadcasts.

 Within the INET family, STREAM is for TCP connections, DGRAM for UDP,
 CUSTOM for IP datagrams transporting a specified protocol, TRACE for
 tracing up from IP layer, and RAW for generating / receiving IP
 datagrams without using XRouter's packet assembly/disassembly.

 Clients may open multiple sockets at once, provided they are not
 identical. For example, a TRACE socket may be opened to monitor
 packet activity, while at the same time a DGRAM socket may be opened
 to send and receive UI frames, while several STREAM sockets may be
 opened, either to make connections to other systems, or to listen for
 incoming connections from them.

 The only limitation is that a client cannot open more than one TRACE
 or RAW socket on the same PORT, or more than one DGRAM socket with
 the same PORT and LOCAL address, or more that one STREAM socket with
 identical PORT, LOCAL and REMOTE addresses.

 Some of these limitations also apply to multiple CLIENTS. For
 instance, only ONE client may open a STREAM listener on the same port
 using the same local address. This is because XRouter would have no
 way of knowing which client to send the incoming packets to.

 RHP sockets are "non-blocking". For example, a connect request,
 INITIATES a connection and returns the result of that operation,
 but the connection may not actually complete until some time later.

 All sockets "owned" by a client are closed when the RHP client
 connection is terminated.

1.3. RHP2 Messages

 Both versions of RHP use a single, persistent, TCP connection between
 the client and XRouter. The connection normally uses TCP port 9000,
 but this may be changed using the RHPPORT directive in XROUTER.CFG.

 In RHP2, JSON "messages" pass bidirectionally across the TCP stream,
 to manage packet connections and transfer data in both directions.

 The protocol may also be used via a Websockets connection, using the
 same TCP port number.

 The endpoint for RHP2 over Websockets is ws://{host}:{port}/rhp,
 e.g. "ws://localhost:9000/rhp". Future versions may duplicate this
 on the regular HTTP port.

 Within "normal" RHP2, JSON messages are "framed" by a simple two-byte
 "frame length", sent high byte first. e.g. the two bytes 0x01 0x20
 indicate that the message which follows them is 288 bytes long.

 .---------------------------.
 | lenH | lenL | RHP Message |
 '---------------------------'
 Bytes: 1 1 <--- len --->

 RHP Message Framing

 The framing for RHP2 in WebSockets is similar, albeit with a more
 complex header.

2. Overview of RHP2 Message Types

 The most commonly used RHP2 message "types" are as follows:

 AUTH (Client to server)
 Sends credentials to authenticate the client. Only required
 if the client has IP address in a public range, and is not
 whitelisted in ACCESS.SYS.

 AUTHREPLY (Server to client)
 Indicates success/failure of auth request.

 OPEN (Client to server)
 Initiates an "active" connection to a specific "target" system,
 or a "passive" listener to wait for incoming connections.

 OPENREPLY (Server to client)
 Indicates success/failure of an OpenRequest, and returns a
 "handle" for further operations.

 ACCEPT (Server to client)
 Conveys details of an incoming connection. Sent by "listener"
 sockets only.

 STATUS (Bidirectional)
 Conveys flags such as "connected" and "busy".

 STATUSREPLY (Server to client)
 Indicates failure of a status request from client.

 SEND (Client to server)
 Sends data to a target system with who a connection has been
 established, if a format dictated by the MODE of the socket.

 SENDREPLY (Server to client)
 Acknowledges a SEND message.

 RECV (Server to client)
 Sends data, received from a connected target system, to the
 client. Each RECV message contains the payload from one packet.

 CLOSE (Client to server
 Requests closure of a socket or connection.

 CLOSEREPLY (Server to client)
 Acknowledges closure of a socket or connection.

 The following BSD-style message types are also supported:

 SOCKET (Client to server)
 Opens a socket.

 SOCKETREPLY (Server to client)
 Indicates success/failure of an SOCKET request, and returns a
 "handle" for further operations.

 BIND (Client to server)
 Associates a local address with the socket

 BINDREPLY (Server to client)
 Indicates success/failure of BIND request.

 LISTEN (Client to server)
 Initiates "listen" mode on a STREAM socket, awaiting incoming
 connections.

 LISTENREPLY (Server to client)
 Indicates success/failure of LISTEN request.

 CONNECT (Client to server)
 Initiates a connection to a target system (STREAM mode), or
 binds a remote address (DGRAM mode).

 CONNECTREPLY
 Indicates success/failure of CONNECT request.

 SENDTO (Client to server)
 Sends data to a target system (DGRAM mode only)

 SENDTOREPLY (Server to client)
 Indicates success/failure of SENDTO operation.

3. RHP Message Types In Detail

 All RHP2 messages MUST be in JSON format, beginning with the opening
 curly bracket '{', and ending with the closing curly bracket '}'.

 Whitespace (spaces, tabs, newlines, etc.) is allowed within the JSON
 messages, but is not mandatory. Message examples in this document
 may include white space for clarity.

 All fields of an RHP message are mandatory unless otherwise stated.

 The order of fields within a message is unimportant.

 All messages MUST have a "type" field.

 The "id" field is optional. If present in a request, XRouter ALWAYS
 replies, returning the same ID in the reply. Using a different ID in
 each request allows replies to be matched with the corresponding
 requests, allowing asynchronous "pipelining" of requests.

 If the "id" field is omitted, the only replies, other than OPENREPLY,
 will be those that contain a non-zero error code.

3.1. The AUTH Message

 The AUTH request sends credentials to authenticate the client. It is

 only required if the client has an IP address in a public range, and
 is not whitelisted by an entry in ACCESS.SYS.

 Fields:

 Name Type Value

 "type" string "auth"
 "id" integer (optional)
 "user" string {user's callsign}
 "pass" string {user's password}

 Example: {"type": "auth", "user": "g9zzz", "pass": "petunias"}

3.2. The AUTHREPLY Message

 This message is sent from server to client, in response to an AUTH
 message or any other request received in unauthorised state.

 Fields:

 Name Type Value

 "type" string "authReply"
 "id" integer Same as request (if present)
 "errCode" integer 0 or 14
 "errText" string "Ok" or "Unauthorised"

 If the usercall and password in an AUTH request match an entry in
 USERPASS.SYS, the value of "errCode" will be 0, and the value of
 "errText" will be "Ok". Otherwise, the value of "errCode" will be
 14, and the value of "errText" will be "Unauthorised".

 Examples:

 {"type": "authReply", "id": 7, "errCode": 0, "errText": "Ok"}
 {"type": "authReply", "errCode": 14, "errText": "Unauthorised"}

3.3. The OPEN Message

 The OPEN request, from client to server, is used to open a socket,
 and optionally to initiate a connection or start a listener. It
 performs, in a single operation, the equivalent of the BSD SOCKET,
 BIND, LISTEN and CONNECT functions, depending on which fields are
 supplied.

 Fields:

 Name Type Value

 "type" string "open"
 "id" integer Serial number of request (optional)
 "pfam" string Protocol family (see section 1.2)
 "mode" string "stream", "dgram", "trace" or "raw"
 "port" string port identifier (port number in XRouter)
 "local" string Local address
 "remote" string Remote address (active open only)
 "flags" integer Option flags

 Values for option flags:

 0x00 Passive open (listen)

 0x01 Trace Incoming frames (modes RAW and TRACE)
 0x02 Trace Outgoing frames (modes RAW and TRACE)
 0x04 Trace Supervisory frames (mode TRACE only)
 0x80 Active open (connect)

 Passive open with unspecified remote accepts any call
 Passive open with remote address accepts only that addr

 Examples:

 Open an ax25 connection to GB7GLO from callsign G8PZT-5:

 {
 "type": "open",
 "id": 22,
 "pfam": "ax25",
 "mode": "stream",
 "port": 2,
 "local": "g8pzt-5",
 "remote": "gb7glo",
 "flags": 128
 }

 Open an AX25 TRACE socket on port 4:

 {
 "type": "open",
 "id": 1,
 "pfam": "ax25",
 "mode": "trace",
 "port": "4",
 "flags": 7
 }

3.4. The OPENREPLY Message

 This message is sent from server to client in response to an OPEN
 request. It indicates success or failure of the request, and if
 the socket was successfully opened it returns a "socket handle" for
 further operations.

 Fields:

 Name Type Value

 "type" string "openReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

 Example:

 {
 "type": "openReply",
 "id": 22,
 "handle": 3,
 "errcode": 0,
 "errtext": "ok"
 }

3.5. The ACCEPT Message

 This message is sent from server to client, by "listener" sockets
 only. It conveys details of an incoming connection.

 Fields:

 Name Type Value

 "type" string "accept"
 "seqno" integer Sequence number of this message
 "handle" integer Socket handle of the listener
 "child" integer Socket handle of the new connection
 "remote" string Remote (caller's) address
 "local" string Local (listener) address
 "port" integer Xrouter port number of new connection

 Example:

 {
 "type": "accept",
 "seqno": 347,
 "handle": 3,
 "child": 7,
 "remote": "G4FPV-5",
 "local": "g8pzt-1",
 "port": 4
 }

3.6. The STATUS Message

 This message can be used in either direction. It can be sent
 asynchronously from server to client, to convey flags such as
 "connected" and "busy". It can also be sent from client to server
 to request a status message from the server. In this second case,
 the server only sends a STATUSREPLY message if the request fails.

 Fields (server to client):

 Name Type Value

 "type" string "status"
 "seqno" integer Sequence number of this message
 "handle" integer Socket handle
 "flags" integer socket flags (server to client only)

 Socket flags:

 CONOK 1 OK to accept (listeners only)
 CONNECTED 2 Downlink is connected
 BUSY 4 Not clear to send

 Example: (server to client)

 {
 "type": "status",
 "seqno": 348,
 "handle": 3
 "flags", 2
 }

 Fields (client to server):

 Name Type Value

 "type" string "status"
 "id" integer Serial number of request (optional)
 "handle" integer Socket handle

 Example: (client to server)

 {
 "type": "status",
 "id": 23,
 "handle": 3
 }

3.7. The STATUSREPLY Message

 This message is only sent from server to client, only in reply to a
 STATUS request, and only if the request fails.

 Fields:

 Name Type Value

 "type" string "statusReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code
 "errtext" string Error text

 Example:

 {
 "type": "statusReply",
 "id": 23,
 "handle": 3
 "errcode": 12,
 "errtext": "Invalid handle"
 }

3.8. The SEND Message

 The SEND message sends data from client to server, for onward
 transmission to another system.

 Fields:

 Name Type Value

 "type" string "send"
 "id" integer Serial number of request (optional)
 "handle" integer Socket handle
 "data" string Data to be sent

 Additional fields for datagram mode only:

 "port" string Destination port
 "local" string Local address
 "remote" string Remote address

 Reserved and control characters in the "data" field MUST be
 JSON-escaped. The total size of the message MUST NOT exceed
 65535 bytes.

 Example:

 {
 "type": "send",
 "id": 23,
 "handle": 3,
 "data": "Hello Fred, are you there?"
 }

3.9. The SENDREPLY Message

 The SENDREPLY message is sent from server to client in response to a
 SEND message, to convey the result of the operation.

 Fields:

 Name Type Value

 "type" string "sendReply"
 "id" integer Matches ID in SEND request (optional)
 "handle" integer Socket handle
 "errcode" integer Error number
 "errtext" string Description of the error
 "status" integer Status flags (STREAM only)

 Status flags:

 CONNECTED 2 Downlink is connected
 BUSY 4 Not clear to send

 Example:

 {
 "type": "sendReply",
 "id": 23,
 "handle": 3,
 "errcode": 0,
 "errtext": "Ok",
 "status": 2
 }

3.10. The RECV Message

 The RECV message is sent asynchronously from server to client, to
 convey data that has been received from a remote system. Each RECV
 message contains the payload from one ax25 packet. This message
 type is also used to convey TRACE data if the socket mode is TRACE.

 Fields:

 Name Type Value

 "type" string "recv"
 "seqno" integer Sequence number of this message
 "handle" integer Socket handle
 "port" string Port it was rcvd on (datagram only)
 "action" string "sent" or "rcvd" (RAW & TRACE only)
 "data" string Data rcvd from remote system

 RAW and TRACE sockets can monitor both sent and received
 traffic, hence the "action" member.

 Example RECV for a STREAM socket:

 {
 "type": "recv",
 "seqno": 349,
 "handle": 3,
 "data": "Yes I'm here, what's up?",
 }

 Example trace representing "[4] T: G8PZT-1>G8PZT: <RR R F R1>":

 {
 "type": "recv",
 "seqno": 349,
 "handle": 1,
 "action": "sent",
 "port": "4",
 "srce": "G8PZT-1",
 "dest": "G8PZT",
 "ctrl": 33,
 "frametype": "RR",
 "rseq": 1,
 "cr": "R",
 "pf": "F",
 }

3.11. The CLOSE Message

 The CLOSE message is sent from client to server, to request closure
 of a socket or connection. It can also be sent asynchronously from
 server to client to inform the client that a connection has been
 closed by the remote link partner.

 Fields:

 Name Type Value

 "type" string "close"
 "id" integer (client to server only) (optional)
 "seqno" integer Sequence number (server to client only)
 "handle" integer Socket handle

 Example (client to server):

 {
 "id": 3,
 "type": "close",
 "handle": 3
 }

 Example (server to client):

 {
 "type": "close",
 "seqno": 350,
 "handle": 3,
 }

3.12. The CLOSEREPLY Message

 The CLOSEREPLY message is sent from server to client, in response to
 a CLOSE message, to acknowledge closure of a socket or connection.

 Fields:

 Name Type Value

 "type" string "closeReply"
 "id" integer matches the one in the CLOSE request
 "handle" integer Socket handle
 "errcode" integer Error number
 "errtext" string Description of the error

 Example of a Successful Close:

 {
 "id": 3,
 "type": "closeReply",
 "handle": 4,
 "errcode": 0,
 "errtext": "Ok"
 }

 Example of a Failed Close:

 {
 "id": 3,
 "type": "closeReply",
 "handle": 0,
 "errcode": 12,
 "errtext": "Invalid handle"
 }

3.13. The SOCKET Message

 The SOCKET request is sent from client to server, to open a socket
 on the XRouter networking stack. It is similar to the OPEN request
 without the extra fields.

 Fields:

 Name Type Value

 "type" string "socket"
 "id" integer Serial number of request (optional)
 "pfam" string Protocol family
 "mode" string "stream", "dgram", "trace", "raw" etc

 For protocol family and mode values, see section 1.2.

 Examples:

 Open an ax25 stream socket:

 {
 "type": "socket",
 "id": 21,
 "pfam": "ax25",
 "mode": "stream"
 }

 Open a NetRom TRACE socket:

 {
 "type": "socket",
 "id": 1,
 "pfam": "netrom",
 "mode": "trace"
 }

3.14. The SOCKETREPLY Message

 A SOCKETREPLY message is sent from server to client in response to
 a SOCKET request. It indicates the success or failure of the
 request, and if the socket was successfully opened it returns a
 "socket handle" for further operations.

 Fields:

 Name Type Value

 "type" string "socketReply"
 "id" integer Same as request (if present)
 "handle" integer Handle of newly-created socket (*)
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

 (*) The "handle" field is only present if the request was successful.

3.15. The BIND Message

 The BIND request is sent from client to server, to associate a local
 address with the socket. Once bound, the local address may be used
 in subsequent LISTEN, CONNECT and SENDTO operations.

 Fields:

 Name Type Value

 "type" string "bind"
 "id" integer Serial number of request (optional)
 "local" string Local address
 "port" string port identifier (port number in XRouter)

 The "port" field is only required for AX25. If supplied for other
 types of socket, that port MUST exist.

 The local address MUST NOT be identical to any of XRouter's
 addresses (using the same callsign with a different SSID is OK).

 If the socket is already bound, the request will fail.

3.16. The BINDREPLY Message

 The BINDREPLY message is sent from server to client. It indicates
 the success or failure of a BIND request.

 Fields:

 Name Type Value

 "type" string "bindReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

3.17. The LISTEN Message

 The LISTEN request is sent from client to server. On STREAM sockets
 it causes the socket to start waiting for incoming connections. On
 other types of socket, it begins the process of packet reception.

 Fields:

 Name Type Value

 "type" string "listen"
 "id" integer Serial number of request (optional)
 "flags" integer Option flags

 Values for option flags:

 0x01 Listen Incoming (modes RAW and TRACE)
 0x02 Listen Outgoing (modes RAW and TRACE)
 0x04 Trace Supervisory frames (AX25 TRACE only)

3.18. The LISTENREPLY Message

 The LISTENREPLY message is sent from server to client. It indicates
 the success or failure of a LISTEN request.

 Fields:

 Name Type Value

 "type" string "listenReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

3.19. The CONNECT Message

 The CONNECT request is sent from client to server. It initiates a
 connection to a target system (STREAM mode), or binds a remote
 address (DGRAM mode).

 Fields:

 Name Type Value

 "type" string "connect"
 "id" integer Serial number of request (optional)
 "remote" string Remote address

 A local address MUST be bound before CONNECT is issued. XRouter
 does not auto-bind local addresses.

3.20. The CONNECTREPLY Message

 The CONNECTREPLY message is sent from server to client. It indicates
 the success or failure of a CONNECT request.

 Fields:

 Name Type Value

 "type" string "ConnectReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

3.21. The SENDTO Message

 The SENDTO request is sent from client to server. It sends data to a
 specified target system. It is allowed only on DGRAM sockets.

 If a local address is bound, only the remote address need be supplied
 and vice versa. If both addresses are bound, the SEND request may be
 used instead. Addresses that are specified in the SENDTO request
 take precedence over any bound addresses.

 Fields:

 Name Type Value

 "type" string "sendto"
 "id" integer Serial number of request (optional)
 "handle" integer Socket handle
 "data" string Data to be sent (*)
 "port" string Destination port
 "local" string Local address
 "remote" string Remote address
 "tos" integer Type of service (INET only)

 (*) Reserved and control characters in the "data" field MUST be
 JSON-escaped. The total size of the message MUST NOT exceed
 65535 bytes.

 Example for AX25 DGRAM socket, with bound local address and port:

 {
 "type": "sendto",
 "id": 23,
 "handle": 3,
 "remote": "g1frd-6",
 "data": "\U0008Hello Fred, are you there?\r"
 }

3.22. The SENDTOREPLY Message

 The SENDTOREPLY message is sent from server to client. It indicates
 the success or failure of SENDTO operation. A SENDTO might fail if
 the handle is missing or invalid, or an address is missing or
 invalid, if the transmit queue is too full and so on. In the latter
 case the message may succeed if retried later.

 Fields:

 Name Type Value

 "type" string "sendtoReply"
 "id" integer Same as request (if present)
 "handle" integer Socket handle
 "errcode" integer Error code (0 = no error)
 "errtext" string Error text in words, e.g. "Ok"

4. Address Formats

 The format of addresses supplied in "local" and "remote" fields
 depends on the address family as follows:

4.1. AX25 Family

 The AX25 family uses simple callsigns, e.g. "g8pzt-1".

4.2. NETROM Family

 The format for NETROM addresses is:

 <usercall>[@nodecall][:svcnum]

 Where "svcnum" is the NetRomX "service" number (Reference [2]).

 Examples: "g8pzt-1@g8pzt" or "gb7pzt:23"

4.3. INET Family

 The format for INET family addresses is <ipaddress>[:port]

 Examples: "44.131.91.2" or "192.168.3.22:25"

5. List of Error Codes

 You are advised to parse the error CODE, not the error text, as the
 latter may change in future versions.

 Code Text Notes

 0 "Ok" No error
 1 "Unspecified" Catch-all error, might be transient
 2 "Bad or missing type" Unrecognised frame type, don't retry
 3 "Invaiid handle" Invalid socket handle, don't retry
 4 "No memory" No memory, try later
 5 "Bad or missing mode" Invalid "mode" in SOCKET or OPEN
 6 "Invalid local address" (in OPEN, SOCKET, or BIND)
 7 "Invalid remote address" (in OPEN or CONNECT)
 8 "Bad or missing family" Unsupported address family
 9 "Duplicate socket" Socket / connection already exists
 10 "No such port" Invalid port number in OPEN or BIND
 11 "Invalid protocol" (in OPEN or SOCKET)
 12 "Bad parameter" Bad or missing parameter
 13 "No buffers" Output queue full (retry later)
 14 "Unauthorised" Request requires AUTHorisation
 15 "No Route" No route to target (L4 / TCP open)
 16 "Operation not supported" e.g. SEND on a TRACE socket

6. Typical Session Flow

 This section outlines the general flow of different type of session.
 It assumes that the client has already established connection with
 the server, either via direct TCP connection, or via Websockets,
 and has authenticated if necessary.

6.1. Outgoing Connection

 An outgoing connection would proceed as follows:

 a) Client sends OPEN message, specifying the radio port, plus
 source and destination calls (including digipeaters if required)

 b) Server immediately replies with OPEN_REPLY, containing a socket
 "handle" for all subsequent operations on the socket.

 c) If the connection succeeds, the server asynchronously sends a
 STATUS message indicating "connected". If the connection fails,
 the status message contains "disconnected" instead.

 d) The client sends data to the connection using SEND messages,
 the payload of which is JSON-escaped so it can handle full
 binary.

 e) SEND messages are acked using SEND_REPLY.

 f) If the client sends too much data for the AX25 link to handle,
 the server sends a STATUS message with the BUSY flag set. When
 clear to send again, the server sends a STATUS message with the
 BUSY flag unset.

 g) Data received from the downlink is sent to the client in RECV
 messages, with the payload JSON-escaped.

 h) If the downlink initiates a disconnect, the server sends a
 STATUS message to the client with the CONNECTED flag set to
 "false". The client must now issue a CLOSE to dispose of the
 socket.

 i) Alternatively, if the client wishes to terminate the connection
 it issues a CLOSE request, and the server responds with a
 CLOSE_REPLY.

6.2. Incoming Connection

 An INCOMING connection proceeds as follows:

 a) The client sends an OPEN message, specifying the XRouter PORT
 number and the local callsign. This creates a "listener" socket.

 b) The server responds with a OPEN_REPLY message containing the
 socket handle (or an error code).

 c) If someone connects to the callsign associated with the socket,
 the server immediately sends an ACCEPT message to the client,
 containing the socket handle and the callsign of the connectee.

 d) The remainder of the connection proceeds as in (d) above.

7. Security Considerations

 By default, RHP only allows usage by clients with "localhost" and
 "LAN" IP addresses. In this context LAN addresses are those in the
 ranges 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16.

 Clients with non-LAN IP addresses MUST authorise, by sending a valid
 AUTH packet before they can use any other RHP commands. The AUTH
 packet MUST contain a username/password pair which matches one stored
 in USERPASS.SYS.

 Non-LAN clients MAY be granted access without AUTH by including the
 client's IP address in ACCESS.SYS. Beware of granting such access
 to ranges of IP addresses, unless you have control of that range.

 At the time of writing, authorisation uses plain text usernames and
 passwords, simply because RHP was never intended for use on the
 public internet. Alternative authenication methods are planned for
 future versions.

8. Caveats

 As this document is a first draft, it may be vague, incomplete or
 inaccurate. If it is not fit for purpose, please send feedback, to
 ensure the next draft is an improvement.

 Not every use case has been exhaustively tested, so there may still
 be bugs in XRouter's implementation of RHP2. Please report them.

9. Feedback

 Please send comments, criticisms, suggestions, hate mail etc to the
 following email address:

 g8pzt@blueyonder.co.uk

10. References

 [1] Dowie P., "Remote Host Protocol", PWP 144, December 2004.

 [2] Dowie P., "NET/ROM Data Multiplexing", PWP 109, July 2001.

PWP222 Remote Host Protocol Version 2 June 2023

