
Packet White Paper: 232
Status: Informational
Date: July 2023
Author: Paula G8PZT

 XRouter MQTT API For Raw Packet I/O

Status of This Memo

 This memo provides information for the Packet Radio community. It
 describes an existing API, but does not propose a standard.
 Distribution of this memo is unlimited.

Abstract

 This memo describes part of the Application Programming Interface
 (API) of the "XRouter" networking software. This fragment of the
 larger API is concerned with the sending and receiving of "raw"
 packets, in which client <> server interactions make use of the MQTT
 protocol.

Table of Contents

 1. Introduction
 1.1. Raw Packets
 1.2. Enabling the API
 1.3. Sending Raw Packets
 1.4. Receiving Raw Packets
 1.5. Wildcards

 2. Interfacing at KISS Layer
 2.1. Enable Reception of Incoming KISS Frames
 2.2. Enable Reception of Outgoing KISS Frames
 2.3. Transmit a KISS Frame

 3. Interfacing at AX25 layer 2
 3.1. Enable Reception of Incoming AX25 Frames
 3.2. Enable Reception of Outgoing AX25 Frames
 3.3. Transmit an AX25 Frame

 4. Interfacing at NetRom Layer 3
 4.1. Enable Reception of Incoming NetRom Datagrams
 4.2. Enable Reception of Outgoing NetRom Datagrams
 4.3. Transmit a NetRom Datagram

 5. Interfacing at IPv4 Layer
 5.1. Enable Reception of Incoming IPv4 Datagrams
 5.2. Enable Reception of Outgoing IPv4 Datagrams
 5.3. Transmit an IPv4 Datagram

 6. Limitations

 7. Security Considerations

 8. References

 9. Author's Address

1. Introduction

 XRouter's "raw packet" API allows MQTT client applications to send
 and receive raw binary packets at different ISO layers. This could
 be used for example to trace / log all channel activity, send and
 receive APRS, build a network crawler, or even a complete MQTT based
 node, using XRouter as a dumb "packet engine" controlling the TNCs.

1.1. Raw Packets

 In this context "raw" packets are self-contained blocks of binary
 data, consisting of a "header" portion and a "payload" portion. The
 format of the packet varies according to the ISO layer.

 For example, a raw AX25 packet contains at least 7-byte source and
 destination callsigns, an optional list of digipeater callsigns, a
 one or two-byte "control" field, and for information-bearing packets
 there will also be a PID (Protocol IDentifier) plus the payload data.

 XRouter currently provides access to raw packets at the KISS, AX25,
 NetRom and IPv4 layers. Such packets may originate / destinate
 "on-air", or within XRouter itself.

1.2. Enabling the API

 In order to use the raw packet API, the application must connect to
 XRouter's inbuilt MQTT broker. The broker is enabled using a
 non-zero MQTTPORT directive in XROUTER.CFG. The usual TCP port for
 MQTT is 1883.

1.3. Sending Raw Packets

 To send a raw packet, the client simply publishes it to the
 appropriate MQTT topic. For example, to send a raw AX25 packet, the
 topic would be:

 xrouter/put/{nodecall}/ax25/{portnum}

 where:

 {nodecall} is the node callsign (including SSID if non-zero),
 e.g. G8PZT-1

 {portnum} is the number of the XRouter PORT upon which the
 packet is to be sent.

 (Note that XRouter identifies PORTs by number, but the topic format
 does not preclude the use of other forms of port identifier, e.g.
 "VHF1", if this protocol was to be adopted by other node software.)

 The broker does not respond to the client, unless the client
 specifies a non-zero Quality of Service (QOS). In which case the
 broker returns a PUBACK if the publish was successful.

1.4. Receiving Raw Packets

 To receive raw packets from XRouter, an MQTT client connected to
 XRouter's broker must first "subscribe" to a "topic", by sending an
 MQTT "subscribe" message.

 For example, to enable the reception of "incoming" KISS frames, i.e.
 those received off air by an interface, the general form of the topic
 would be as follows:

 xrouter/kiss/{nodecall}/rcvd/{ifacenum}

 where: {ifacenum} is the INTERFACE number.

 Thereafter, the broker publishes all the KISS frames received via
 the specified interface, using the same topic. For example if the
 {nodecall} was G8PZT-1 and the interface number was 3, received
 frames would be published to the topic:

 xrouter/kiss/G8PZT-1/rcvd/3

 To enable the reception of "outgoing" KISS frames, i.e. those
 transmitted to air via an interface, the general form of the topic
 would be as follows:

 xrouter/kiss/{nodecall}/sent/{ifacenum}

1.5. Wildcards

 The MQTT multi-level wildcard (#) may be used in topics, for
 example:

 xrouter/kiss/G8PZT-1/rcvd/# - Rcvd frames from all interfaces

 xrouter/kiss/G8PZT-1/# - All sent and rcvd frames

 The single-level wildcard is not yet supported.

2. Interfacing at KISS Layer

 Raw KISS frames begin with a "control" byte, which defines the type
 of data that follows it. This may be data, TNC settings, polls,
 ACKs etc.

 For KISS "data" frames, the upper nybble indicates the "channel"
 (0-15) on the TNC, if the TNC supports it. Note that the "TNC" may
 be a real hardware device, or just a piece of software. In XRouter,
 a TNC is considered to be an INTERFACE with the outside world, and
 each of its "channels" may be associated with an XRouter PORT.

2.1. Enable Reception of Incoming KISS Frames

 Topic: xrouter/kiss/{nodecall}/rcvd/{ifacenum}

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain KISS frames received on
 the specified interface. These frames include the KISS "control"
 byte, but do not include the KISS framing and escape sequences.

2.2. Enable Reception of Outgoing KISS Frames

 Topic: xrouter/kiss/{nodecall}/sent/{ifacenum}

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain KISS frames transmitted
 on the specified interface. These frames include the KISS "control"
 byte, but do not include the KISS framing and escape sequences.

2.3. Transmit a KISS Frame

 Topic: xrouter/put/{nodecall}/kiss/{ifacenum}

 Payload: Raw KISS, including "control" byte, but excluding KISS
 framing and escape sequences.

 Publishing to this topic causes the KISS payload to be transmitted
 on the specified interface. No response is returned, other than a
 PUBACK if QOS is greater than 0.

3. Interfacing at AX25 Layer 2

 Frames transmitted or received at this layer may contain higher level
 protocols such as NetRom, IP, INP3 etc. The interface has no concept
 of state, so applications are free to implement their own LAPB layer
 if so desired.

3.1. Enable Reception of Incoming AX25 Frames

 Topic: xrouter/ax25/{nodecall}/rcvd/{portnum}

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain AX25 frames received on
 the specified port. Frames do not include HDLC framing or CRC.

3.2. Enable Reception of Outgoing AX25 Frames

 Topic: xrouter/ax25/{nodecall}/sent/{portnum}

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain AX25 frames transmitted
 on the specified port. Frames do not include HDLC framing or CRC.

3.3. Transmit an AX25 Frame.

 Topic: xrouter/put/{nodecall}/ax25/{portnum}

 Payload: Raw AX25, without CRC or HDLC framing.

 Publishing to this topic causes the AX25 payload to be transmitted
 on the specified port. No response is returned, other than a
 PUBACK if QOS is greater than 0.

4. Interfacing at NetRom Datagram Layer

 Frames transmitted or received at this layer include only "routable"
 NetRom L3 datagrams. L3RTT, INP3, and Nodes broadcasts are not part
 of this layer, and can be handled via the raw AX25 interface. There
 is no concept of "port" at the datagram layer, where everything goes
 via the NetRom router.

 A NetRom "datagram" consists of a 15 byte header portion, and at
 least 5 bytes of payload. The header contains layer 3 source and
 destination callsigns, plus a TTL (Time To Live) byte.

4.1. Enable Reception of Incoming NetRom Datagrams

 Topic: xrouter/nr3b/{nodecall}/rcvd

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain received NetRom
 datagrams.

4.2. Enable Reception of Outgoing NetRom Datagrams

 Topic: xrouter/nr3b/{nodecall}/sent

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain outgoing (sent) NetRom
 datagrams.

4.3. Transmit A NetRom Datagram.

 Topic: xrouter/put/{nodecall}/nr3b

 Payload: Raw NetRom.

 Publishing to this topic causes the NetRom payload to be
 transmitted via whatever route the NetRom router deems is best. No
 response is returned, other than a PUBACK if QOS is greater than 0.

5. Interfacing at IPV4 Layer

 This layer sends and receives raw IP version 4 datagrams. Such
 datagrams may contain any IP protocol, such as ICMP, UDP, TCP etc.
 Link-layer protocol headers are removed upon receive and added upon
 transmit. Incoming fragments are not reassembled. Outgoing
 datagrams are routed according to XRouter's routing table, and are
 fragmented to suit the interface MTU, providing the DF (Don't
 Fragment) bit is not set. If the DF bit is set and the datagram is
 too big for the egress interface, it is silently discarded.

5.1. Enable Reception of Incoming IPv4 Datagrams

 Topic: xrouter/ipv4/{nodecall}/rcvd

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain received IPv4 datagrams.

5.2. Enable Reception of Outgoing IPv4 Datagrams

 Topic: xrouter/ipv4/{nodecall}/sent

 Subscribing to this topic causes XRouter to publish MQTT frames,
 to the same topic, whose payloads contain Outgoing (sent) IPv4
 datagrams.

5.3. Transmit an IPv4 Datagram.

 Topic: xrouter/put/{nodecall}/ipv4

 Payload: Raw IPv4 datagram

 Publishing to this topic causes the IPv4 payload to be
 transmitted via whatever route XRouter's IP router deems is best.
 No response is returned, other than a PUBACK if QOS is greater
 than 0.

6. Limitations

 At the time of writing, this implementation has a few minor
 limitations. For example, the MQTT broker does not yet support
 Quality of Service levels 2 and 3. And it does not yet support the
 single-level wildcard (+). These limitation will be rectified in
 later versions of XRouter.

7. Security Considerations

 At the time of writing, there is no security on the MQTT server, as
 it was intended solely for use on a LAN. As this API can send and
 receive AX25, NetRom and IP packets, the MQTT server MUST NOT be
 exposed to the open Internet.

8. References

 [MQTT-OASIS-Standard-v5] Banks, A., Ed., Briggs, E., Ed.,
 Borgendale, K., Ed., and R. Gupta, Ed., "MQTT Version 5.0",
 OASIS Standard, March 2019,
 <https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html>.

9. Author's Address

 Please send comments, criticisms, suggestions, hate mail etc. to the
 following email address:

 g8pzt[at]blueyonder.co.uk

PWP232 XRouter MQTT API For Raw Packet I/O July 2023

