
Packet White Paper: 249
Status: Informational
Date: January 2025
Author: Paula Dowie
Updates: PWP245

 AX25 Packet Tracing Within XRouter Remote Host Protocol

Abstract

 RHP is one of the XRouter API's. This document describes how to set
 up AX25 packet tracing within an XRouter RHPv2 (Remote Host Protocol
 version 2) session, and how to interpret the resulting JSON-format
 messages.

Status of this Memo

 This memo provides information for the Packet Radio community. It
 is aimed at developers who wish to use RHP. It does not propose any
 form of standard. Discussions and suggestions are welcome.
 Distribution of this memo is unlimited.

Copyright Notice

 Copyright (c) 2025 Paula Dowie. All rights reserved.

Table of Contents

 1. Introduction

 1.1. Brief Overview of RHP
 1.2. Packet Tracing
 1.3. RHP Sockets
 1.4. Trace Sockets

 2. Using Packet Trace Sockets

 2.1. Opening Packet Trace Sockets
 2.2. Successful Open
 2.3. Unsuccessful Open
 2.4. Closing Packet Trace Sockets
 2.5. Successful Close
 2.6. Unsuccessful Close
 2.7. List of Error Messages

 3. Packet Trace Message Formats

 3.1. Example Packet Trace
 3.2. Layer 2 (AX25) Trace Fields
 3.3. Layer 3/4 (NetRom) Trace Fields

 4. Security Considerations

 5. References

 6. Author's Address

1. Introduction

 This section gives a brief overview of RHP, packet tracing, and trace
 sockets. For more information on RHP, please see “RHP Version 2 AX25
 Functionality" [PWP245].

1.1. Brief Overview of RHP

 RHP is the acronym for REMOTE HOST PROTOCOL, so called because it
 allows a "host" application to be located remotely from XRouter,
 effectively using XRouter as a multi-protocol "packet engine".

 It is a client-server protocol in which the server is XRouter. The
 client is usually, but not necessarily, some sort of application
 with a human interface.

 The client and server interact by passing "messages" via a single,
 persistent TCP stream. In RHP version 2, those messages use JSON
 format. This document applies only to version 2.

 Within "normal" RHP2, JSON messages are "framed" by a simple two-byte
 "frame length", sent high byte first. e.g. the two bytes 0x01 0x20
 indicate that the subsequent 288 bytes are a frame. The framing for
 RHP within WebSockets is similar, albeit with a more complex header.

 The protocol allows clients to access the XRouter protocol stack at
 several layers. This document concerns only AX25 layer 2.

1.2. RHP Sockets

 At the heart of RHP is the concept of "sockets", i.e. communication
 endpoints. These are functionally similar to Berkeley (BSD) sockets,
 but with some extra features.

 The diagram below depicts a client using RHP to control a socket, and
 to exchange data with it. In turn the socket is interacting with a
 target system using the AX25 protocol. Data is passed between the
 client and target via the socket, whilst RHP control signals pass
 only between client and server.

 .--------------.
 .--------. | .--------. | .--------.
 | client |<------------->| socket |<------------>| Target |
 '--------' RHP | '--------' | AX25 '--------'
 '--------------'
 Server (XRouter)

 Sockets must be "opened" before use, and "closed" after use. When a
 socket is opened, a numeric "handle" is returned, which must be used

 for all subsequent operations via that socket.

 Clients may open multiple sockets, provided there is no conflict
 between them, for example two sockets with exactly the same target
 address and port.

 All sockets "owned" by a client are closed if the client disconnects.

 When opening a socket, the client must specify a "protocol family",
 in this case "AX25", and a "mode".

 There are 4 main socket "modes" applicable to AX25, as follows:

 STREAM = AX25 connected mode
 DATAGRAM = AX25 unconnected mode (UI frames)
 RAW = AX25 un-decoded raw packet data
 TRACE = AX25 decoded headers plus data

 It is only the last of these modes with which this document is
 concerned.

1.2. Packet Tracing

 Within the scope of this document, "Packet Tracing" refers to the
 process of decoding a communication protocol's packets, and
 presenting them in human-readable form.

 RHP includes a mechanism for tracing packets entering or leaving
 any of XRouter's communication "ports".

 Several different protocols may be traced. This document is only
 concerned with the AX25 protocol.

1.4. Packet Trace Sockets

 These are special sockets which have their MODE set to "trace".
 There is no equivalent in Berkeley Sockets.

 Trace sockets have no "target" address. Instead they watch and
 decode traffic entering and leaving XRouter via its PORTS. The
 following diagram is a simplified representation:

 .--------------------------------------.
 | XRouter .----------. .------|
 | | AX25 +--| Port |
 .--------. | .--------. | Protocol | '------|
 | client |<-------->| socket |<-. | Stack +-. |
 '--------' | '--------' | '----------' | |
 | .-----------+----------. | |
 | | AX25 to JSON decoder |<---' |
 | '----------------------' |
 '--------------------------------------'

 In practice there may be multiple ports, multiple protocol stacks,
 multiple decoders, and multiple sockets per client.

2. Using Packet Trace Sockets

 This section describes how to open and use XRouter's AX25 Packet
 Trace sockets, via Remote Host Protocol. It is assumed that the
 client has already established an RHP connection with XRouter.

 For the purposes of this document, JSON requests and responses are
 shown in "human-friendly" form. In practice, the whites pace can be
 omitted.

2.1. Opening Packet Trace Sockets

 Clients open AX25 trace sockets using "open" requests, specifying
 protocol family "ax25" and mode "trace". The client must also
 specify the number of the XRouter port to be watched, and some flags
 which control what types of packet are traced. For example, the
 client would send a JSON request like this:

 {
 "type": "open",
 "id": 22,
 "pfam": "ax25",
 "mode": "trace",
 "port": "4",
 "flags": 7
 }

 The "id" field is an optional serial number, used to match commands
 and responses in "pipelined" situations. It may safely be omitted
 if the client only executes one command at a time.

 The value for the "flags" field is the numerical sum of various
 options. The options for ax25 trace sockets are as follows:

 0x01 Trace Incoming frames
 0x02 Trace Outgoing frames
 0x04 Trace Supervisory frames

 Thus a "flags" value of 1 would trace only incoming information and
 unnumbered information frames, whereas a value of 7 would trace all
 incoming and outgoing frames.

2.2. Successful Open

 If the socket is successfully opened, XRouter sends back a reply
 similar to this, containing the handle of the new socket:

 {
 "type": "openReply",
 "id": 22,
 "handle": 3,
 "errcode": 0,
 "errtext": "ok"
 }

 Thereafter, XRouter will send JSON messages with "type": "recv" to
 the client whenever a packet is traced. The format of these

 messages is discussed later in this document.

2.3. Unsuccessful Open

 If the socket cannot be opened, e.g. because the specified PORT
 doesn't exist, XRouter returns an error message to the client,
 similar to this:

 {
 "type": "openReply",
 "id": 22,
 "errcode": 10,
 "errtext": "No such port"
 }

 A full list of error codes can be found in PWP 245

2.4. Closing Packet Trace Sockets

 Packet trace sockets are closed in exactly the same way as any other
 type of RHP socket, i.e. by sending an RHP "close" request. In RHP2
 this consists of a JSON message similar to this:

 {
 "id": 23, (optional)
 "type": "close", (required)
 "handle": 3 (required)
 }

2.5. Successful Close

 If the socket is successfully closed, XRouter replies with a
 "closeReply" message, similar to this:

 {
 "id": 23,
 "type": "closeReply",
 "handle": 3,
 "errcode":0,
 "errtext":"Ok"
 }

2.6. Unsuccessful Close

 If the close request was unsuccessful, e.g. because the specified
 handle did not refer to an open socket, XRouter responds with an
 error message similar to this:

 {
 "id": 23,
 "type": "closeReply",
 "handle": 0,
 "errcode": 12,
 "errtext": "Invalid handle"
 }

2.7. List of Error Messages

 The following error messages are applicable to TRACE sockets.

 You are advised to parse the error CODE, not the error text, as the
 latter may change in future versions.

 Code Text Notes

 0 "Ok" No error
 1 "Unspecified" Catch-all error, might be transient
 2 "Bad or missing type" Unrecognised frame type, don't retry
 3 "Invalid handle" Invalid socket handle, don't retry
 4 "No memory" No memory, try later
 5 "Bad or missing mode" Invalid "mode" in SOCKET or OPEN
 8 "Bad or missing family" Unsupported address family
 9 "Duplicate socket" Socket / connection already exists
 10 "No such port" Invalid port number in OPEN
 11 "Invalid protocol" (in OPEN or SOCKET)
 12 "Bad parameter" Bad or missing parameter
 14 "Unauthorised" Request requires AUTHorisation
 16 "Operation not supported" e.g. SEND on a TRACE socket

3. Packet Trace Message Formats

 This section describes the format of the JSON messages in detail.
 As mentioned above, white space is included for clarity and may be
 safely omitted.

3.1. Example Packet Trace

 The "AX25" in "AX25 Trace Socket" refers to the protocol layer at
 which the packets are sampled. AX25 packets may contain other
 protocols, such as NetRom, as shown in the following example:

 {
 "type": "recv",
 "handle": 5,
 "action": "sent",
 "port": 2,
 "srce": "G8PZT-1",
 "dest": "G8PZT",
 "ctrl": 140,
 "frametype": "I",
 "rseq": 4,
 "tseq": 6,
 "cr": "C",
 "ilen": 33,
 "pid": 207,
 "ptcl": "NET/ROM",
 ---- this section present for ptcl=NetRom frames only -----
 "l3type": "NetRom",
 "l3src": "G8PZT-1",
 "l3dst": "G8PZT",
 "ttl": 25,
 "l4Type": "INFO",

 "toCct": 16199,
 "txSeq": 0,
 "rxSeq": 0,

 "data": "Hello World!\r"
 }

 The above frame might conventionally be displayed as follows:

 *** Port 2 sent:
 AX25: G8PZT-1>G8PZT <I C R4 S6> ilen=33 pid=207 NET/ROM
 NTRM: G8PZT-1 to G8PZT ttl=25 cct=16199 <INFO S1 R1>:
 Hello World!

 At the date of writing, the AX25 trace sockets in XRouter v504b
 only trace up to NetRom layer 4. Other protocols will be traced
 in future versions.

3.2. Layer 2 (AX25) Trace Fields

 These are all the possible fields which may occur within an AX25
 Layer 2 trace. Most of these fields will be present in all frames,
 but fields such as "digis", and all those below "frameType" may be
 present only in some frames.

 Field Type Comments

 "type" string RHP frame type - always "recv"
 "handle" integer Handle of the trace socket
 "action" string "sent" or "rcvd" (*1)
 "port" integer XRouter port number
 "srce" string Source callsign+ssid, e.g. "G8PZT-1"
 "dest" string Destination callsign+ssid, e.g "M0AHN-9"
 "digis" string List of digipeater calls (*2)
 "ctrl" integer AX25 control field numeric value. (*3)
 "frametype" string Frame type mnemonic, e.g. "I", "RR" (*4)
 "rseq" integer Receive sequence number (i.e. expected)
 "tseq" integer Transmit sequence number
 "cr" string Command/Response bit (*5)
 "pf" string Poll/Final bit, either "P" or "F" (*6)
 "ilen" integer Length of information field (*7)
 "pid" integer Next layer protocol number in decimal (*8)
 "ptcl" string Next layer protocol in words (*9)
 "data" string L2 payload. Only present if "ptcl" is "DATA"

 (*1) "sent" indicates outgoing packets, i.e. those transmitted by
 XRouter onto the air or onto the packet network. "rcvd"
 indicates incoming packets, i.e. those received off-air or
 from the packet network.

 (*2) The "digis" field is only present if there are digipeaters in
 the destination path. If present, the field value is a JSON
 array of digipeater objects. Each digipeater object contains
 two fields as follows:

 Field Type Comments

 "digiCall" string Digipeater's callsign+SSID
 "repeated" boolean True if digi repeated the packet

 (*3) Applications may wish to decode the control field themselves
 instead of using the strings provided by XRouter.

 (*4) Possible values for the L2 "frameType" field:

 Mnemonic Meaning

 "SABME" Set Asynchronous Balanced Mode Extended
 "C" Non-extended connnect request (AKA SABM)
 "D" Disconnect Request
 "DM" Disconnected Mode / Busy
 "UA" Unnumbered Acknowledgement
 "UI" Unnumbered Information frame
 "I" Numbered information frame
 "FRMR" Frame Reject (serious error)
 "RR" Receiver Ready
 "RNR" Receiver Not Ready
 "REJ" Reject (Frame not the expected one)
 "?" Unknown type

 (*5) Possible values for the "cr" (Command/Response) field are as
 follows:

 "C" Command
 "R" Response
 "V1" AX25 version 1

 (*6) Possible values for the "pf" (Poll/Final) field are as
 follows:

 "P" Poll
 "F" Final

 (*7) The "ilen" field is only present in frame types "I" and "UI".

 (*8) The "pid" value includes the two high order bits which are
 usually set to one, but are sometimes used for layer 2
 fragmentation.

 (*9) Possible values for the "ptcl" (Layer 3 protocol) field:

 Mnemonic Meaning
 --
 "SEG" Intermediate segment of a fragmented packet
 "DATA" No layer 3, i.e. payload contains normal data
 "NET/ROM" Payload contains NetRom/INP3 information
 "IP" Payload contains IP datagram or part thereof
 "ARP" Payload contains ARP data
 "?" Unknown layer 3 protocol

3.3. Layer 3/4 (NetRom) Trace Fields

 These fields are only present if PID is 207 (ptcl=Net/ROM). Some of
 these fields are only present in a few frame types.

 Field Type Comments

 "l3type" string Layer 3 frame type (see below) (*1)
 "l3src" string layer 3 source callsign
 "l3dst" string Layer 3 destination callsign
 "ttl" integer Layer 3 Time To Live
 "l4type" string NetRom L4 Frame Type (*2)
 "fromCct" integer Source circuit number (*3)
 "toCct" integer Destination circuit number (*4)
 "txSeq" integer Transmit sequence number (*6)
 "rxSeq" integer Receive sequence number (*7)
 "infoLen" integer Information length (INFO frames only)
 "srcUser" string Callsign of originating user (*3)
 "srcNode" string Callsign of originating user's node (*3)
 "service" integer NetRomX service number (*5)
 "window" integer Proposed window (*3)
 "accWin" integer Acceptable window ("CONN ACK" only)
 "l4t1" integer Layer 4 T1 timer in seconds (*3)
 "bpqSpy" integer BPQ extension (*3)
 "chokeFlag" boolean True if CHOKE flag is set
 "nakFlag" boolean True if NAK flag is set
 "moreFlag" boolean True if MORE flag is set

 (*1) layer 3 frame types for "l3type":

 Value Meaning
 --
 "NetRom" Netrom L4 control/data
 "Routing info" Layer 3 routing data
 "Routing poll" Request for nodes broadcast
 "Unknown" Shouldn't happen

 (*2) Possible values for "l4type":

 Value Meaning
 --
 "CONN REQ" Connect Request
 "CONN REQX" Extended Connect Request
 "CONN ACK" Connection Acknowledgement
 "CONN NAK" Connection Negative Ack (refusal)
 "DISC REQ" Disconnect request
 "DISC ACK" Disconnect Acknowledgement
 "INFO" Information-bearing frame
 "INFO ACK" Acknowledgement for an INFO frame.
 "RSET" Circuit Reset (kill)
 "PROT EXT" Protocol Extension (e.g. IP, NCMP etc)
 "unknown" Unrecognised type (shouldn't happen)

 Protocol extension indicates that the frame does NOT contain
 Netrom layer 4 control or data.

 (*3) These fields are only present in L4 frame types "CONN REQ" and
 "CONN REQX".

 (*4) The "toCct" field is only present in L4 frame types "CONN ACK",
 "INFO", "INFO ACK", "DISC REQ" and "DISC ACK".

 (*5) Field "service" is only present in L4 frame type "CONN REQX".

 (*6) The "txSeq" field is only present in "INFO" frames.

 (*7) The "rxSeq" field is only present in "INFO" and INFO ACK"
 frames.

4. Security Considerations

 Packet traces may contain sensitive data such as IP addresses,
 usernames, passwords, clues to LAN topology etc. It is therefore
 recommended that RHP is not opened up to the wider Internet.

 By default, RHP allows unauthorised connections from LAN addresses,
 but not from non-LAN addresses.

 Clients with non-LAN IP addresses MUST send a valid AUTH packet
 before they can access any other RHP commands. The AUTH packet MUST
 contain a username/password pair which matches one stored in
 USERPASS.SYS.

 Non-LAN clients MAY be granted access without AUTH by including the
 client's IP address in ACCESS.SYS. Beware of granting such access
 to ranges of IP addresses, unless you have control of that range.

5. References

 [PWP144] Dowie, P., "Remote Host Protocol", PWP 144, December 2004.

 [PWP222] Dowie, P., "Remote Host Protocol Version 2", PWP 222,
 June 2023.

 [PWP245] Dowie, P., "RHP Version 2 - AX25 Functionality", PWP 245,
 May 2024.

6. Author's Address

 Paula Dowie
 g8pzt[at]blueyonder.co.uk (replace ‘[at]’ with ‘@’)

PWP249 AX25 Packet Tracing Within RHP January 2025

