
Packet White Paper: 251
Status: Informational
Author: Paula Dowie
Date: January 2025

 JSON Mailbox Protocol (JMP)

Abstract

 This document describes a modern, extensible protocol for machine to
 machine interactions between end-user clients and Packet Radio mail
 servers.

 The protocol uses JSON, because it is relatively easy to generate
 and parse, is easily understood by humans, and is ideally suited to
 modern browser-based applications.

 The protocol is intended as an easy retrofit to existing Amateur
 Packet Radio mailbox software.

Status of This Memo

 This memo provides information for the Packet Radio community. It
 describes an existing protocol, and is aimed at Packet mailbox and
 client developers who wish to implement it. Distribution of this
 memo is unlimited.

Copyright Notice

 Copyright (c) 2025 Paula Dowie. All rights reserved.

Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119.

Table of Contents

 1. Introduction

 1.1. Reasons For Using JSON
 1.2. Disadvantage of JSON
 1.3. Connecting To A Mail Server
 1.4. Identifying the JSON Capability

 2. Structure of Requests And Responses

 3. Summary of Available Commands

PWP251 JSON Mailbox Protocol [Page 1]

 4. Commands In Detail

 4.1. Status Enquiry
 4.2. Requesting a List of Messages
 4.3. Requesting a Single Message
 4.4. Posting a New Message
 4.5. Deleting a Message
 4.6. Disconnecting From The Mailbox

 5. Notes

 6. Security Considerations

 7. Author's Address

 8. References

1. Introduction

 Since the earliest days of Amateur Packet Radio (a.k.a. "Packet"),
 mailboxes have had at least two "interfaces", one for use by humans
 and the other for automated "Store and Forward" operations. The
 former is generally intended for "real time" usage, and the latter is
 usually available only to other designated mailboxes.

 Packet Radio is slow, with an average throughput often lower than the
 old 300/300 dial up modems. Users don't wish to sit around reading
 mail "live" over a radio link. Therefore, over the years there have
 arisen many client programs which automatically download and upload
 mail at a snail's pace, whilst at the same time presenting a fast,
 standardised user interface. The most famous of these was "Winpack",
 a more recent one being "Outpost".

 A major problem with such clients is the wide variation in the user
 interface between Packet mailbox types. For example, when listing
 mail, the column layouts are non-standard, the column headings
 languages, pagination and commands differ, and some mailboxes use
 colour. These variations make it difficult for the client program to
 parse the mailbox output. This means that users often spend many
 hours "tweaking" their client programs for a particular server, only
 to have them break due to a minor change in the server software.

 What Packet mailboxes sadly lack is a standardised machine-to-machine
 interface, intended for use over radio. Such interfaces do already
 exist, i.e. the WA7MBL and F6FBB mail exchange protocols. But they
 are for store and forward only, and available only to trusted peer
 mailboxes.

 Some mailboxes have POP3, SMTP, NNTP and IMAP, but these are
 relatively complex to retrofit onto a Packet mailbox, and are not
 best suited to Packet.

 This document outlines a novel machine-to-machine protocol for Packet
 Radio mail servers, intended for use by end-user client applications.
 The new protocol uses JSON [RFC8259] over a conventional Packet

PWP251 JSON Mailbox Protocol [Page 2]

 "stream" connection. The protocol is available in XRouter.

1.1. Reasons For Using JSON

 The protocol uses JSON, because JSON is:

 - relatively easy to generate and parse
 - designed for handling lists and complex structures
 - ideally suited to modern browser-based applications.
 - easily understood by humans, which aids debugging.
 - extensible (new features can be easily added)

 This protocol is not the "ultimate" solution, it is simply ONE
 possible solution. Much more efficient protocols could be designed,
 but JSON is ubiquitous nowadays. When the core protocol is JSON, it
 is ideally suited for use via HTTP, MQTT, WebSockets or plain text
 links. The same program code can, with a few tweaks, serve all these
 types of links.

 Although JSON is verbose, it is of minor consequence, as the majority
 of the data transferred is the mail itself.

1.2. Disadvantage of JSON

 A downside of JSON is that it is poor at handling binary data.

 Certain characters such as newlines, quotes and backslashes must be
 "escaped" by preceding them with a backslash, thus doubling the space
 that they occupy. In addition, all other character codes below 32
 must be escaped by converting them to six-character sequences. This
 considerably bloats binary data. Fortunately, packet mail rarely
 contains binary data.

 If binary data proves to be a problem, it may be "wrapped" in a JSON
 friendly encapsulation, such as Base-64, for transmission between
 server and client.

1.3. Connecting To A Mail Server

 This document does not address the means of connecting to a Packet
 mailbox. There are many ways to do so, such as:

 - Connecting to a Packet node and issuing the 'BBS' command.
 - Connecting to a specific "BBS-only" callsign on a node.
 - Connecting to a "stand alone" BBS.
 - Connecting via NetRomX [PWP109] to the BBS "service" on a node.
 - Connecting via Telnet (amprnet or internet)

 Of these, the only consistent one is the NetRomX service, because it
 was expressly designed for machine-to-machine interactions. The only
 problem with NetRomX is that, so far, it is only implemented by
 XRouter.

PWP251 JSON Mailbox Protocol [Page 3]

 This protocol outlined in this document is intended to be a drop-in
 addition to existing mailbox software, not a radical redesign of
 packet mailbox architecture.

 Therefore, at least for the time being, it is best if the connection
 to the mail server is manually scripted and remains outside the
 scope of this document.

1.4 Identifying the JMP Capability

 One option would have been to add a new capability flag to the
 mailbox System Identifier (SID). However, the SID is intended for
 mailbox to mailbox operations, and is often not displayed to "user"
 connections. So that approach was not chosen.

 Clients may verify the JMP capability by simply sending a JSON
 formatted command and observing the response. The "status" command
 is ideal for this. Mailboxes without the JMP capability will
 respond with a non-JSON error message.

2. Structure of Requests And Responses

 The protocol is very simple. The client connects to a mailbox in
 the same way as any other "user", issues requests (commands), and
 receives responses. When it is finished, it disconnects. The
 connection persists throughout the session, but the operations
 themselves are stateless. It is the responsibility of the client to
 keep track of state if necessary.

 All commands must be in JSON format, beginning with the opening
 curly bracket '{', and ending with the closing curly bracket '}'.
 This "object" must be followed by carriage return (i.e. '\r', 0x0d,
 ASCII 13), as per normal Packet Radio convention.

 White space (spaces, tabs, newlines, etc.) is allowed within the JSON
 objects, but is not mandatory. Examples in this document may include
 white space for clarity.

 Commands are not case sensitive, and the order of fields within
 command objects is unimportant.

 All command objects must have a "cmd" field, otherwise the response
 is as follows:

 {"error": "missing cmd"}

 Response objects are also followed by carriage return.

 If a command is not recognised, the response is:

 {"error": "Unknown cmd"}

PWP251 JSON Mailbox Protocol [Page 4]

3. Summary of Available Commands

 The command set is limited to the bare minimum required to list,
 read, send and delete mail. Other commands are available, but have
 been omitted for brevity.

 The accepted values for the "cmd" field are as follows:

 Command Action

 "status" Returns basic info about the message base.
 "list" Lists mail headers
 "read" Reads a single message
 "send" Sends a message
 "kill" Deletes a message
 "bye" Disconnects the client from the mailbox.

 It would have been theoretically possible to pare all request and
 response field names down to single characters, but the choice not to
 do so was deliberate. Little would have been gained in terms of
 bandwidth, at the expense of making the protocol hard for humans to
 read. A human-readable protocol is easier to debug, and there is
 less chance of programming errors.

4. Commands In Detail

 This section describes each of the commands in more detail. Each
 command is fully described in its own subsection

4.1. Status Enquiry

 The status enquiry acts as a quick verification that the mailbox is
 capable of operation via JSON, and returns some information about
 the message base.

 The request is simply: {"cmd": "status"}

 If the mailbox responds to JSON, it will reply with a JSON object
 something like this:

 {"msgs": 23, "priv": 23, "bull": 0,
 "oldest": 1711381953, "newest": 1737831323}

4.2. Requesting a List of Messages

 The "list" request has many options, and would usually be the first
 request in a download session. All fields except "cmd" are
 optional.

PWP251 JSON Mailbox Protocol [Page 5]

 Field Type Description

 "cmd" string "list" (mandatory)
 "offset" integer Number of items to ignore, starting
 from most recent message, default 0
 "maxitems" integer Maximum items to return, default 500
 "before" integer Msgs rcvd before this UNIX time
 "after" integer Msgs rcvd on or after this UNIX time
 "reverse" boolean true=newest first, false=oldest first (default)
 "type" string Type of message: ("P", "B" etc)
 "status" string Message status: ($, H, F, R etc)
 "to" string Destination callsign / bulletin topic
 "at" string Destination host or distribution area
 "from" string Sender's callsign
 "subject" string" String to match in subject field

 Example: {"cmd":"list", "type":"B", "to":"TECH", "maxitems":10}

 Options, other than "offset" and "maxitems", act as filters,
 reducing the number of message items returned. For example, if
 the option "type":"B" is specified, only bulletins are returned.

 If the request succeeds, the reply is an unnamed JSON object
 containing an array called "msgs". The array contains zero or more
 JSON objects, each representing one item of mail (message), and
 containing the following fields:

 Name Type Description

 "id" integer Message number.
 "mid" string Message ID (MID or BID)
 "rcvd" integer Date/time of message reception (*1)
 "dated" string Human-readable version of above (*2)
 "size" integer Length of the message body in bytes.
 "type" string Type of message: (A, P, B, E, T etc)
 "status" string Message status: (R, F, U etc) (*3)
 "to" string Destination address (*4)
 "from" string Callsign of the message's creator.
 "subject" string Message subject (32 chars max)

 (*1) in Unix time, i.e seconds since 1st Jan 1970 UTC
 (*2) e.g. "2024-06-11T07:00:12Z"
 (*3) type and status may in future be unambiguous words
 (*4) e.g. "g8pzt", "all@gbr", "g8pzt@gb7pzt.#24.gbr.eu"

 For each mail item, only its header information is returned.
 Mail bodies must be requested individually (see below).

 By default, messages are listed in NORMAL order, i.e. oldest first.

 The list contains only those messages that the user is authorised
 to see, i.e. for non-sysops this means bulletins and private mail
 originated by, or addressed to, the user.

 If there is not enough memory the satisfy the request, the response
 is: {"error": "2 (no memory)"}.

PWP251 JSON Mailbox Protocol [Page 6]

4.3. Requesting a Single Message

 The "read" request is used to download messages, chosen from the
 response to a "list" request, from the server to the client. The
 request fields are as follows:

 Field Type Description
 --
 "cmd" string "read" (mandatory)
 "id" integer Message number (mandatory)
 "hdrs" integer Routing hdrs (optional): 0=None, 1=first, 2=all

 If the "hdrs" option is omitted, the default is to include no routing
 headers.

 Example: {"cmd":"read", "id":2847, "hdrs":2}

 If the request is successful, the reply is an unnamed JSON object
 containing at least the following fields:

 Name Type Description

 "id" integer Message number.
 "mid" string Message ID (MID or BID)
 "rcvd" integer Date/time of message reception (*1).
 "dated" string Human-readable version of above (*2)
 "size" integer Length of the message body in bytes.
 "type" string Type of message: (A, P, B, E, T etc)
 "status" string Message status: (R, F, U etc) (*3)
 "to" string Destination address (*4)
 "from" string Callsign of the message's creator.
 "subject" string Message subject (32 chars max)
 "text" string Body of the message (*5)

 (*1) in Unix time, i.e seconds since 1st Jan 1970 UTC
 (*2) e.g. "2024-06-11T07:00:12Z"
 (*3) type and status may in future be unambiguous words?
 (*4) e.g. "g8pzt", "all@gbr", "g8pzt@gb7pzt.#24.gbr.eu"
 (*5) Message body includes all RFC822 and requested routing headers

 If the user does not have the necessary privileges to access the
 message, the response is: {"error": "6 (permission denied)"}.

 If the requested message number is not found, the response
 is: {"error": "10 (not found)"}.

 If there is not enough memory the satisfy the request, the response
 is: {"error": "2 (no memory)"}.

4.4. Posting a New Message

 The "send" request is used to upload a message to the mailbox, for
 onward transmission. The request must contain ALL of the following
 fields:

PWP251 JSON Mailbox Protocol [Page 7]

 Name Type Description

 "cmd" string "send"
 "from" string Callsign of sender
 "to" string Destination (see below)
 "type" string Only "P" or "B" at present
 "subject" string Subject of message (32 chars max)
 "text" string Body of the message

 For private messages the destination may be just a callsign,
 or <callsign>@<hierarchical-address>. For bulletins it may
 be simply <topic> or <topic>@<distribution>. For email it must be
 <user>@<host>.

 If the request is successful, the reply is an unnamed JSON object
 containing the results of the operation, for example:

 {"resource": "message", "id": "1741", "action": "created"}

 If any field in the JSON request is missing or malformed, the
 response is: {"error": "12 (bad argument)"}.

 If the user does not have the necessary privileges to create the
 message, the response is: {"error": "6 (permission denied)"}.

 If there is not enough memory the satisfy the request, the response
 is: {"error": "2 (no memory)"}.

 This method could also be used for copying a message to a new
 recipient.

4.5. Deleting a Message

 The "kill" request is used to delete messages from the server.
 Messages are deleted by number, one at a time. The request fields
 are as follows:

 Field Type Description
 --
 "cmd" string "kill" (mandatory)
 "id" integer Message number (mandatory)

 Example: {"cmd": "kill", "id": "2437"}

 If the request is successful, the reply is an unnamed JSON object
 containing the results of the operation, for example:

 {"resource": "message", "id": "1741", "action": "deleted"}

 If any field in the JSON request is missing or malformed, the
 response is: {"error": "12 (bad argument)"}.

 If the requested message number is not found, the response
 is: {"error": "10 (not found)"}.

PWP251 JSON Mailbox Protocol [Page 8]

 If the user does not have the necessary privileges to delete the
 message, the response is: {"error": "6 (permission denied)"}.

 Future versions may allow multiple deletion.

4.6. Disconnecting From The Mailbox

 The "bye" request gracefully disconnects the client from the server.
 No response is sent. The request is as follows:

 {"cmd": "bye"}

 The connection is then terminated by the server.

5. Notes

 The client should preferably use the "rcvd" timestamp to keep track
 of which messages have been received. The mailbox may renumber the
 message base from time to time, hence the "id" field of a message is
 only trustworthy for short-term usage.

 However, renumbering tends to take place in the middle of the night
 when no clients are connected, so the "id" field can be trusted
 within a session.

 The protocol is deliberately "one message at a time" (a) to avoid
 hogging the radio channel, and (b) to reduce the load on the server
 which may have to cache the responses to many clients simultaneously.

6. Security Considerations

 Security is the responsibility of the mailbox, not this protocol.

 In XRouter, mail security is based upon the client's callsign, and
 any privileges associated with that callsign. Clients with
 "standard" privileges are not allowed to view or edit mail that
 doesn't belong to them, i.e. which is not addressed to or from their
 callsign. They are also not allowed to send mail which has a "from"
 field that differs from their login callsign.

 The tradition on Packet Radio has been that people are who they say
 they are. With many eyes watching a radio channel, callsign piracy
 tends to be easily spotted, and isn't generally a problem.

 However, in some cases there may be a need for callsign verification,
 for example by the use of "one time codes", CHAP, or password grid
 challenges. These methods are usually included in standard mailbox
 software, hence this protocol includes no additional security.

PWP251 JSON Mailbox Protocol [Page 9]

7. Author's Address

 Paula Dowie (protocol author)
 g8pzt[at]blueyonder.co.uk (replace '[at]' with '@')

8. References

 [PWP109] Dowie, P., "NET/ROM Data Multiplexing", PWP 109, July 2001.

 [RFC8259] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 8259, December 2017.

PWP251 JSON Mailbox Protocol [Page 10]

