
Packet White Paper: 255
Status: Request for Comments
Date: October 2025
Author: Paula Dowie

 Packet Network Monitoring Project

Abstract

 This preliminary draft proposes a network-wide monitoring system for
 the Amateur Packet Radio network to help diagnose outages. The
 recommended architecture includes a central server/database, node
 reporter clients, a web UI, and a data "hose line" for applications.

 The document suggests a collaborative project management approach and
 recommends a UDP transport protocol for reports formatted in JSON,
 specifying minimum required fields like node callsign, timestamp, and
 report type for unique identification. The document aims to initiate
 discussion and project development.

Status of This Memo

 This document is a preliminary draft for discussion purposes only.
 It has no official standing and is subject to change without notice.
 Feedback and comments are welcome.

Copyright Notice

 Copyright (c) 2025 Paula Dowie. All rights reserved.

Table of Contents

 1. Introduction
 2. Project Management
 3. System Architecture
 4. Server / Database
 5. Reporter Clients
 6. About Reports
 6.1. Transport Protocol
 6.2. Report Format
 7. Minimum Report Fields
 8. Basic Reports
 8.1. NODE_UP Report
 8.2. NODE_ERROR Report
 8.3. NODE_DOWN Report
 8.4. LINK_UP Report
 8.5. LINK_ERROR Report
 8.6. LINK_DOWN Report
 8.7. CIRCUIT_UP Report
 8.8. CIRCUIT_ERROR Report
 8.9. CIRCUIT_DOWN Report
 9. Future Additions
 9.1. Routing Tables
 10. Timing Errors
 11. Random Thoughts

 12. Security Considerations
 13. Author's Address

1. Introduction

 The Amateur Packet Radio network is experimental, with a significant
 probability of outages. Reasons for outages include, but are not
 limited to, power cuts, faulty software, hardware failures, human
 error, interference, anomalous propagation, and "finger trouble".

 When things go wrong, it is often difficult to find out WHY and WHERE
 they went wrong, meaning that lessons are not learned, and the
 problem may keep recurring. Therefore the view has been expressed
 several times that there ought to be some sort of network-wide
 monitoring system.

 The purpose of such a system would be to provide a real-time overview
 of the state of the network, and to record historical data such that
 the network state at any moment in time could be reconstructed.

 This document aims to stimulate discussion and maybe "get the ball
 rolling" on such a project.

2. Project Management

 This is not the sort of project that should be dictated by a web
 developer alone. It needs to be a multi-way collaboration between
 node authors and higher-level developers, not a top-down approach.

 Without an intimate understanding of the inner workings of node
 software, a web developer is likely to specify a reporting protocol
 which is convenient for them, but impractical for node authors to
 implement. The node authors must agree on, and implement a reporting
 protocol that is also acceptable to the database operator. The role
 of any project manager, if one is required at all, should be to
 coordinate, not micromanage every detail.

3. System Architecture

 One possible implementation of a packet network monitoring system
 would consist of an internet-based server/database, a simple
 reporting client in every node, a web UI, and a "hose line" of all
 status messages, allowing other developers to build custom
 applications around the data.

 A "Radio-Only" implementation could use standard packet mail, or a
 variation thereof, to move aggregated status reports to a central
 server. It would be slower and less reliable than an internet based
 solution, but nevertheless might be an interesting toy.

4. Server / Database

 The server needs to be independent of the node software authors and
 available to all types of node software. Is this the sort of thing
 the "OARC Compute" service could be used for?

 In its simplest form the server could consist of an endpoint which
 receives reports from nodes, and queues them for the database to pick

 up, plus a TCP server to redistribute reports to hoseline clients.

 The database could be integral to the server, or a separate process
 that pulls data from the server's output queue.

 To avoid loss of data, the server core needs to focus on keeping the
 input queue as clear as possible. Hoseline and database operations
 are lower priority.

5. Reporter Clients

 The aim would be to include a reporter client in every type of node
 software, if possible.

 The client must be easy for all node authors to implement, otherwise
 the project will never materialise. Node authors should not be
 expected to add large amounts of complex code, or to require external
 dependencies. Let us invent our own wheel, not slavishly use someone
 else's.

 The clients would report node status and events to the server in a
 timely manner.

6. About Reports

6.1. Transport Protocol

 UDP would be simplest to implement, and would place fewer demands on
 both client (the node software) and server. The client can simply
 "fire and forget" the reports. A few datagrams might be lost, but
 such losses are relatively rare, and in the vast majority of cases
 would be of little consequence.

 TCP is theoretically more reliable, but more complicated. The server
 might have to deal with peaks of hundreds or even thousands of
 connections per second, each consuming resources during its life
 cycle. The node software can't just "fire and forget", it has to
 manage a thread for the duration of that connection.

 The overhead and time delays involved in creating and tearing down
 one connection per report could be reduced by each node maintaining
 a persistent connection with the server, but that may not be very
 scalable.

 Ideally the server should support both TCP and UDP options.

6.2. Report Format

 Whichever transport is chosen, the reports should ideally be as
 concise as possible, because some node sites may have limited
 internet data allowances. However such sites are probably rare,
 so the project must not be unduly hobbled to accommodate them.

 Each report should ideally be human-readable, and clearly delimited
 so that the server may simply pull them off a text queue.

 Although JSON is relatively verbose, it is probably the best
 compromise between size, ease of implementation, flexibility and

 future extensibility. It is also understood by web applications and
 developers. Therefore it is the recommended choice.

 Each report would consist of an unnamed JSON object, containing a
 number of fields, some of which may themselves be objects or arrays
 of objects. The report would begin with an opening curly brace '{'
 and end with a closing curly brace '}'.

 If UDP transport is used (the preferred option), each datagram may
 contain more than one report, but must not contain partial reports.

 In the following sections, the JSON field names are shown in full for
 clarity. They *could* be shortened to single characters, but that
 goes against the spirit of JSON, i.e. its human readability. Making
 the field names more cryptic would make things harder for both
 developers and users. At the end of the day, it would be humans
 reading these reports in the course of fault tracing.

 The suggested reports deliberately contain redundancy, firstly
 because reports may be lost in transport or processing, and secondly
 because each report should be as self-contained as possible.

7. Minimum Report Fields

 Each report MUST contain at least the node callsign, a timestamp, and
 the report type. The report should preferably include a serial
 number, to help disambiguate multiple reports with identical
 timestamps.

 The following JSON fields are suggested:

 Name Type Description
 --
 "type" String Type of report, e.g "linkUp", "linkDown"
 "node" String Reporter's Node callsign (including SSID)
 "time" Integer Reporter's timestamp (Secs since 1/1/70)
 "serial" Integer Report serial number (16-bit)

 The combination of nodecall, timestamp and serial number forms a
 globally unique "Report ID". There is probably no need to use serial
 numbers greater than 16-bit, as It would be extremely unlikely for
 the same 16-bit serial number to occur twice within the same second!

 Nodes should preferably try to preserve the last-used serial number
 across restarts, but this is not essential.

8. Basic Reports

 The reports in this section are merely a suggestion. If implemented,
 they would allow an overview of the network and the state of its
 AX25 links at any point in time. That may be of limited use, but is
 a framework upon which to add more functionality as required.

8.1. NODE_UP Report

 Sent when a node starts up, and at regular intervals thereafter as
 "proof of life". MUST include the boot time, allowing intervening
 crashes, reboots or lost "nodeUp" events to be detected.

 Name Type Description
 --
 "type" String "nodeUp"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time at start (secs since 1/1/70)

 Optional fields:

 Most of the following data COULD be obtained from the existing map
 server, but it might be useful to include in this project.

 Name Type Description
 --
 "alias" String Node alias, e.g. "KDRMIN"
 "locator" String Maidenhead locator, e.g. IO83VJ
 "software" String Node Software type, e.g. "BPQ", "JNOS"
 "version" String Software version, e.g. "504j"

 The "regular intervals" mentioned above may need to be determined by
 trial and error, but five minutes is suggested.

8.2. NODE_ERROR Report

 Optionally sent upon system error, such as "out of memory" / "out of
 buffers" / "node table full", that might affect the node's ability
 to handle packets correctly.

 Name Type Description
 --
 "type" String "nodeError"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "error" String Description, e.g. "no handles"

 Errors such as "no buffers" may occur many times per second, so
 nodes should take steps to limit the number of identical error
 reports to a "reasonable" rate, yet to be decided.

 Nodes may optionally send this report with "error" of "none" when
 all error conditions are safely cleared.

8.3. NODE_DOWN Report

 Sent when a node is in the process of going offline. Unlikely to be
 sent when a node crashes, unless the SIGSEGV handler is hooked.
 However an unplanned "down" event may be inferred if a node fails to
 report within a reasonable interval, or if a subsequent NODE_UP event
 is received with a more recent "since" field.

 Name Type Description
 --
 "type" String "nodeDown"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970

 "serial" Integer Report serial number (16-bit)
 "reason" String Reason for the shutdown, e.g. "reboot"

8.4. LINK_UP Report

 Sent when an AX25 L2 link enters the fully connected state, and at
 regular intervals thereafter, for the lifetime of the connection.
 This report MUST include the remote and local callsigns, the port
 ID (number or mnemonic), the direction (in/out), and the start time.
 It MAY include other data such as the ax25 version, maxframe, paclen
 etc.

 Name Type Description
 --
 "type" String "linkUp"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time at link start (secs since 1/1/70)
 "port" String Port ID, e.g. "3" or "4mlink"
 "remote" String Other end's callsign
 "local" String Our end's callsign
 "direction" String Direction: "in" or "out"

 Optional fields:

 Name Type Description
 --
 "modulo" Integer 8=normal ax25, 128=Extended ax25
 "version" String AX25 version, e.g. "2.2"
 "maxframe" Integer Local maxframe for this link
 "paclen" Integer Local paclen for this link
 "qcount" Integer Number of packets currently in queue
 "qlen" Integer Total queue length in octets
 "sent" Integer Total numbered INFO frames sent so far
 "resent" Integer Total numbered INFO frames retransmitted

 The "since" field helps to uniquely identify the link, follow its
 progress over time, and mitigate against lost reports. A link
 serial number could be used instead, or in addition. The advantage
 of using "since" is that it makes it easier to locate the point in
 time where the link began.

 The "qcount" and / or "qlen" fields could be included in the routine
 "keepalive" reports if they are non-zero. An excessive queue length
 could also trigger a report.

 The "sent" and "resent" fields would allow the retry rate of the
 link to be estimated. A high retry rate might explain a subsequent
 link failure.

8.5. LINK_ERROR Report

 This report would be sent if an error condition, such as FRMR or
 "retry count exceeded", occurs on an AX25 L2 link.

 Name Type Description
 --

 "type" String "linkError"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time of link start (secs since 1/1/70)
 "port" String Port ID, e.g. "3" or "4mlink"
 "remote" String Remote callsign
 "local" String Local callsign
 "error" String Type of error, e.g. "FRMR Sent"

8.6. LINK_DOWN Report

 This report would be sent when an existing AX25 L2 link is torn
 down. The fields are as follows:

 Name Type Description
 --
 "type" String "linkDown"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time of link start (secs since 1/1/70)
 "port" String Port ID, e.g. "3" or "4mlink"
 "remote" String Remote callsign
 "local" String Local callsign
 "direction" String Initiator : "in" or "out"

 The "direction" field indicates which end of the link initiated the
 disconnection, "in" indicating a received DISC frame, and "out"
 indicating a sent DISC frame.

8.7. CIRCUIT_UP Report

 This report would be sent when a NetRom L4 circuit enters the fully
 connected state, and at regular intervals thereafter, for the
 lifetime of the circuit.

 The report SHOULD include all the fields detailed below. It MAY
 include optional fields.

 Name Type Description
 --
 "type" String "circuitUp"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time of circuit start (secs since 1/1/70)
 "remote" String Remote address: "usercall@nodecall"
 "local" String Local address (nodecall or applcall)
 "remCct" Integer Remote end's circuit number
 "locCct" Integer Local end's circuit number
 "direction" String Initiator: "in" or "out"

 Optional Fields:

 "svcNum" Integer L4X "service number", e.g. 80=http
 "qCount" Integer Unacked packets in TX queue
 "qLen" Integer TX queue length in octets

8.8. CIRCUIT_ERROR Report

 Name Type Description
 --
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time of circuit start (secs since 1/1/70)
 "remote" String Remote address: "usercall@nodecall"
 "local" String Local address (nodecall or applcall)
 "remCct" Integer Remote end's circuit number
 "locCct" Integer Local end's circuit number
 "error" String Description of error

8.9. CIRCUIT_DOWN Report

 This report would be sent when an existing NetRom L4 link is torn
 down. The fields are as follows:

 Name Type Description
 --
 "type" String "circuitDown"
 "node" String Node callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "since" Integer Time of circuit start (secs since 1/1/70)
 "remote" String Remote address: "usercall@nodecall"
 "local" String Local address (nodecall or applcall)
 "remCct" Integer Remote end's circuit number
 "locCct" Integer Local end's circuit number
 "direction" String Disconnected by: "in" or "out"

9. Future Additions

9.1. Routing Tables

 The system as described so far would give an overview of the network,
 or at least the participating stations, and some of the AX25 and
 NetRom interconnections.

 What it lacks is knowledge of the routing tables that dictate which
 interlinks are made. Such information would be highly useful,
 because many of the problems observed in the network appear to be
 caused by faulty routing.

 By the time a problem comes to light, the routing has changed, so it
 is very difficult to track down these problems in real time. The
 ability to wind back and examine "snapshots" of the routing tables at
 any past instant would be invaluable.

 However, such functionality would come at a cost, especially for the
 server. Node tables may be large, and sending them in JSON format
 would expand the amount of data to be sent. To be useful, the tables
 would need to be uploaded at regular intervals, say every 30 minutes
 maximum.

 If the costs are considered worthwhile, a suggested report format

 would be as follows:

 Name Type Description
 --
 "type" String "nodeItem"
 "node" String Sender Node's callsign (including SSID)
 "time" Integer Seconds since 1st Jan 1970
 "serial" Integer Report serial number (16-bit)
 "data" Object The data for one node entry as below

 The "data" object would contain the following fields:

 Name Type Description
 --
 "dest" String Destination node's callsign (incl SSID)
 "alias" String Destination node's alias
 "via" Array 1 or more egress routes (neighbours)

 Each element of the "via" array would be a JSON object with some or
 all of the following fields:

 Name Type Description
 --
 "nhbr" String Neighbour's callsign
 "port" String Port identifier, e.g. "1", or "70cm"
 "qual" Integer Netrom quality via this neighbour
 "nttl" Integer Netrom Time To Live (minutes)
 "ttime" Integer Trip time (if known) in 1/100ths sec
 "hops" Integer Hop count (if known)
 "ittl" Integer INP3 Time To Live (minutes)

 The nhbr" and "port" fields are mandatory. The "qual" and "nttl"
 fields may be omitted if there is no netrom domain route info.
 Likewise the "ttime", "hops" and "ittl" may be omitted if there is no
 INP3-derived data. The information for at least one or the two
 domains must be included.

 The "nttl" field would convey how much longer this route will remain
 viable, before being obsoleted in the netrom domain. This is a
 better method than using Obscount, Obsmin etc, which vary from node
 to node. The "ittl" field does the same job for the INP3 derived
 data.

 Example:

 This example shows two routes from G8PZT to GB7BDH, both with viable
 netrom metrics, but the second one with "horizon" INP3 values...

 {"type": "nodeItem", "node": "G8PZT", "time": 1759688220,
 "serial": 5525, "data": { "dest": "GB7BDH", "alias": "SWINDN",
 "via": [{"nhbr": "GB7BDH", "port": "8", "qual": 10, "nttl": 120,
 "ttime": 2, "hops": 1, "ittl": 120}, {"nhbr": "M1BFP-1", "port":
 "18", "qual": 56, "nttl": 60, "ttime": 60000, "hops": 30,
 "ittl": 0}]}
 }

 A full node entry with all the fields populated could use several
 hundred bytes, so it is probably best to send them singly to avoid

 ICMP "requires fragmentation" errors.

10. Timing Errors

 If a node is reporting, it must therefore have an Internet
 connection, and in most cases is likely to be synchronised to a time
 server. However the latter point may not always be true. For
 example, Puppy Linux only time-syncs at boot-up, or manually
 thereafter. And some sysops may be running their systems on BST,
 not GMT.

 An hour's discrepancy between the report and server timestamps could
 easily be corrected by the server. But that would hide an error
 which might need to be brought to someone's attention. Therefore the
 server should not tamper with the report timestamps, nor should it
 use them to arrange reports in order.

 Reports must be entered into the database in the order of reception,
 along with the server's timestamp.

11. Random Thoughts

 The project must be extensible, otherwise it risks being bogged down
 by trying to predict every future requirement. It should be able to
 start simple, and grow organically.

 The project is intended for the UK packet network only.

 There will be some "holes" in the system, because not all nodes have
 an Internet connection, some node sysops may opt-out, and some node
 software may not be capable.

12. Security Considerations

 Some sysops may consider this system to be too "Big Brother", but it
 is completely voluntary, and they are free to opt in or out.

 The system absolutely MUST NOT permanently record or divulge the IP
 addresses of the reporters.

 Tracking individual packets through the network is theoretically
 possible, and would be fairly benign. But reporting the packet
 contents would be a step too far.

 As it stands there is nothing to stop malicious actors injecting fake
 reports into the system. However the same is true of the existing
 node map API's. What would a malefactor gain from injecting fake
 reports? Would there be sufficient reward to make it worth his
 while? Is it really worth adding layers of security overhead to
 guard against something of little consequence?

 A simple mitigation might be to validity check the reports, and
 discard any that fail to conform exactly to the minimum required
 format, or that contain unacceptable content. Any further reports
 from the same sender would be discarded.

13. Author's Address

 Paula Dowie
 Email: g8pzt@blueyonder.co.uk
 WhatsPac: G8PZT
 Packet: G8PZT@GB7BBS.#24.GBR.EU

